Spaces:
Running
on
L4
Running
on
L4
File size: 2,644 Bytes
5b4c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# Code modified from Rafael Valle's implementation https://github.com/NVIDIA/waveglow/blob/5bc2a53e20b3b533362f974cfa1ea0267ae1c2b1/denoiser.py
"""Waveglow style denoiser can be used to remove the artifacts from the HiFiGAN generated audio."""
import torch
class Denoiser(torch.nn.Module):
"""Removes model bias from audio produced with waveglow"""
def __init__(self, vocoder, filter_length=1024, n_overlap=4, win_length=1024, mode="zeros"):
super().__init__()
self.filter_length = filter_length
self.hop_length = int(filter_length / n_overlap)
self.win_length = win_length
dtype, device = next(vocoder.parameters()).dtype, next(vocoder.parameters()).device
self.device = device
if mode == "zeros":
mel_input = torch.zeros((1, 80, 88), dtype=dtype, device=device)
elif mode == "normal":
mel_input = torch.randn((1, 80, 88), dtype=dtype, device=device)
else:
raise Exception(f"Mode {mode} if not supported")
def stft_fn(audio, n_fft, hop_length, win_length, window):
spec = torch.stft(
audio,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=window,
return_complex=True,
)
spec = torch.view_as_real(spec)
return torch.sqrt(spec.pow(2).sum(-1)), torch.atan2(spec[..., -1], spec[..., 0])
self.stft = lambda x: stft_fn(
audio=x,
n_fft=self.filter_length,
hop_length=self.hop_length,
win_length=self.win_length,
window=torch.hann_window(self.win_length, device=device),
)
self.istft = lambda x, y: torch.istft(
torch.complex(x * torch.cos(y), x * torch.sin(y)),
n_fft=self.filter_length,
hop_length=self.hop_length,
win_length=self.win_length,
window=torch.hann_window(self.win_length, device=device),
)
with torch.no_grad():
bias_audio = vocoder(mel_input).float().squeeze(0)
bias_spec, _ = self.stft(bias_audio)
self.register_buffer("bias_spec", bias_spec[:, :, 0][:, :, None])
@torch.inference_mode()
def forward(self, audio, strength=0.0005):
audio_spec, audio_angles = self.stft(audio)
audio_spec_denoised = audio_spec - self.bias_spec.to(audio.device) * strength
audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0)
audio_denoised = self.istft(audio_spec_denoised, audio_angles)
return audio_denoised
|