File size: 5,386 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
import random
from pathlib import Path

import numpy as np
import torch
from lightning import LightningModule

from matcha.cli import VOCODER_URLS, load_matcha, load_vocoder

DEFAULT_OPSET = 15

SEED = 1234
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False


class MatchaWithVocoder(LightningModule):
    def __init__(self, matcha, vocoder):
        super().__init__()
        self.matcha = matcha
        self.vocoder = vocoder

    def forward(self, x, x_lengths, scales, spks=None):
        mel, mel_lengths = self.matcha(x, x_lengths, scales, spks)
        wavs = self.vocoder(mel).clamp(-1, 1)
        lengths = mel_lengths * 256
        return wavs.squeeze(1), lengths


def get_exportable_module(matcha, vocoder, n_timesteps):
    """
    Return an appropriate `LighteningModule` and output-node names
    based on whether the vocoder is embedded in  the final graph
    """

    def onnx_forward_func(x, x_lengths, scales, spks=None):
        """
        Custom forward function for accepting
        scaler parameters as tensors
        """
        # Extract scaler parameters from tensors
        temperature = scales[0]
        length_scale = scales[1]
        output = matcha.synthesise(x, x_lengths, n_timesteps, temperature, spks, length_scale)
        return output["mel"], output["mel_lengths"]

    # Monkey-patch Matcha's forward function
    matcha.forward = onnx_forward_func

    if vocoder is None:
        model, output_names = matcha, ["mel", "mel_lengths"]
    else:
        model = MatchaWithVocoder(matcha, vocoder)
        output_names = ["wav", "wav_lengths"]
    return model, output_names


def get_inputs(is_multi_speaker):
    """
    Create dummy inputs for tracing
    """
    dummy_input_length = 50
    x = torch.randint(low=0, high=20, size=(1, dummy_input_length), dtype=torch.long)
    x_lengths = torch.LongTensor([dummy_input_length])

    # Scales
    temperature = 0.667
    length_scale = 1.0
    scales = torch.Tensor([temperature, length_scale])

    model_inputs = [x, x_lengths, scales]
    input_names = [
        "x",
        "x_lengths",
        "scales",
    ]

    if is_multi_speaker:
        spks = torch.LongTensor([1])
        model_inputs.append(spks)
        input_names.append("spks")

    return tuple(model_inputs), input_names


def main():
    parser = argparse.ArgumentParser(description="Export 🍵 Matcha-TTS to ONNX")

    parser.add_argument(
        "checkpoint_path",
        type=str,
        help="Path to the model checkpoint",
    )
    parser.add_argument("output", type=str, help="Path to output `.onnx` file")
    parser.add_argument(
        "--n-timesteps", type=int, default=5, help="Number of steps to use for reverse diffusion in decoder (default 5)"
    )
    parser.add_argument(
        "--vocoder-name",
        type=str,
        choices=list(VOCODER_URLS.keys()),
        default=None,
        help="Name of the vocoder to embed in the ONNX graph",
    )
    parser.add_argument(
        "--vocoder-checkpoint-path",
        type=str,
        default=None,
        help="Vocoder checkpoint to embed  in the ONNX graph for an `e2e` like experience",
    )
    parser.add_argument("--opset", type=int, default=DEFAULT_OPSET, help="ONNX opset version to use (default 15")

    args = parser.parse_args()

    print(f"[🍵] Loading Matcha checkpoint from {args.checkpoint_path}")
    print(f"Setting n_timesteps to {args.n_timesteps}")

    checkpoint_path = Path(args.checkpoint_path)
    matcha = load_matcha(checkpoint_path.stem, checkpoint_path, "cpu")

    if args.vocoder_name or args.vocoder_checkpoint_path:
        assert (
            args.vocoder_name and args.vocoder_checkpoint_path
        ), "Both vocoder_name and vocoder-checkpoint are required when embedding the vocoder in the ONNX graph."
        vocoder, _ = load_vocoder(args.vocoder_name, args.vocoder_checkpoint_path, "cpu")
    else:
        vocoder = None

    is_multi_speaker = matcha.n_spks > 1

    dummy_input, input_names = get_inputs(is_multi_speaker)
    model, output_names = get_exportable_module(matcha, vocoder, args.n_timesteps)

    # Set dynamic shape for inputs/outputs
    dynamic_axes = {
        "x": {0: "batch_size", 1: "time"},
        "x_lengths": {0: "batch_size"},
    }

    if vocoder is None:
        dynamic_axes.update(
            {
                "mel": {0: "batch_size", 2: "time"},
                "mel_lengths": {0: "batch_size"},
            }
        )
    else:
        print("Embedding the vocoder in the ONNX graph")
        dynamic_axes.update(
            {
                "wav": {0: "batch_size", 1: "time"},
                "wav_lengths": {0: "batch_size"},
            }
        )

    if is_multi_speaker:
        dynamic_axes["spks"] = {0: "batch_size"}

    # Create the output directory (if not exists)
    Path(args.output).parent.mkdir(parents=True, exist_ok=True)

    model.to_onnx(
        args.output,
        dummy_input,
        input_names=input_names,
        output_names=output_names,
        dynamic_axes=dynamic_axes,
        opset_version=args.opset,
        export_params=True,
        do_constant_folding=True,
    )
    print(f"[🍵] ONNX model exported to  {args.output}")


if __name__ == "__main__":
    main()