Spaces:
Running
on
L4
Running
on
L4
File size: 6,293 Bytes
5b4c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import argparse
import os
import warnings
from pathlib import Path
from time import perf_counter
import numpy as np
import onnxruntime as ort
import soundfile as sf
import torch
from matcha.cli import plot_spectrogram_to_numpy, process_text
def validate_args(args):
assert (
args.text or args.file
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
assert args.temperature >= 0, "Sampling temperature cannot be negative"
assert args.speaking_rate >= 0, "Speaking rate must be greater than 0"
return args
def write_wavs(model, inputs, output_dir, external_vocoder=None):
if external_vocoder is None:
print("The provided model has the vocoder embedded in the graph.\nGenerating waveform directly")
t0 = perf_counter()
wavs, wav_lengths = model.run(None, inputs)
infer_secs = perf_counter() - t0
mel_infer_secs = vocoder_infer_secs = None
else:
print("[🍵] Generating mel using Matcha")
mel_t0 = perf_counter()
mels, mel_lengths = model.run(None, inputs)
mel_infer_secs = perf_counter() - mel_t0
print("Generating waveform from mel using external vocoder")
vocoder_inputs = {external_vocoder.get_inputs()[0].name: mels}
vocoder_t0 = perf_counter()
wavs = external_vocoder.run(None, vocoder_inputs)[0]
vocoder_infer_secs = perf_counter() - vocoder_t0
wavs = wavs.squeeze(1)
wav_lengths = mel_lengths * 256
infer_secs = mel_infer_secs + vocoder_infer_secs
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
for i, (wav, wav_length) in enumerate(zip(wavs, wav_lengths)):
output_filename = output_dir.joinpath(f"output_{i + 1}.wav")
audio = wav[:wav_length]
print(f"Writing audio to {output_filename}")
sf.write(output_filename, audio, 22050, "PCM_24")
wav_secs = wav_lengths.sum() / 22050
print(f"Inference seconds: {infer_secs}")
print(f"Generated wav seconds: {wav_secs}")
rtf = infer_secs / wav_secs
if mel_infer_secs is not None:
mel_rtf = mel_infer_secs / wav_secs
print(f"Matcha RTF: {mel_rtf}")
if vocoder_infer_secs is not None:
vocoder_rtf = vocoder_infer_secs / wav_secs
print(f"Vocoder RTF: {vocoder_rtf}")
print(f"Overall RTF: {rtf}")
def write_mels(model, inputs, output_dir):
t0 = perf_counter()
mels, mel_lengths = model.run(None, inputs)
infer_secs = perf_counter() - t0
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
for i, mel in enumerate(mels):
output_stem = output_dir.joinpath(f"output_{i + 1}")
plot_spectrogram_to_numpy(mel.squeeze(), output_stem.with_suffix(".png"))
np.save(output_stem.with_suffix(".numpy"), mel)
wav_secs = (mel_lengths * 256).sum() / 22050
print(f"Inference seconds: {infer_secs}")
print(f"Generated wav seconds: {wav_secs}")
rtf = infer_secs / wav_secs
print(f"RTF: {rtf}")
def main():
parser = argparse.ArgumentParser(
description=" 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching"
)
parser.add_argument(
"model",
type=str,
help="ONNX model to use",
)
parser.add_argument("--vocoder", type=str, default=None, help="Vocoder to use (defaults to None)")
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
parser.add_argument("--spk", type=int, default=None, help="Speaker ID")
parser.add_argument(
"--temperature",
type=float,
default=0.667,
help="Variance of the x0 noise (default: 0.667)",
)
parser.add_argument(
"--speaking-rate",
type=float,
default=1.0,
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
)
parser.add_argument("--gpu", action="store_true", help="Use CPU for inference (default: use GPU if available)")
parser.add_argument(
"--output-dir",
type=str,
default=os.getcwd(),
help="Output folder to save results (default: current dir)",
)
args = parser.parse_args()
args = validate_args(args)
if args.gpu:
providers = ["GPUExecutionProvider"]
else:
providers = ["CPUExecutionProvider"]
model = ort.InferenceSession(args.model, providers=providers)
model_inputs = model.get_inputs()
model_outputs = list(model.get_outputs())
if args.text:
text_lines = args.text.splitlines()
else:
with open(args.file, encoding="utf-8") as file:
text_lines = file.read().splitlines()
processed_lines = [process_text(0, line, "cpu") for line in text_lines]
x = [line["x"].squeeze() for line in processed_lines]
# Pad
x = torch.nn.utils.rnn.pad_sequence(x, batch_first=True)
x = x.detach().cpu().numpy()
x_lengths = np.array([line["x_lengths"].item() for line in processed_lines], dtype=np.int64)
inputs = {
"x": x,
"x_lengths": x_lengths,
"scales": np.array([args.temperature, args.speaking_rate], dtype=np.float32),
}
is_multi_speaker = len(model_inputs) == 4
if is_multi_speaker:
if args.spk is None:
args.spk = 0
warn = "[!] Speaker ID not provided! Using speaker ID 0"
warnings.warn(warn, UserWarning)
inputs["spks"] = np.repeat(args.spk, x.shape[0]).astype(np.int64)
has_vocoder_embedded = model_outputs[0].name == "wav"
if has_vocoder_embedded:
write_wavs(model, inputs, args.output_dir)
elif args.vocoder:
external_vocoder = ort.InferenceSession(args.vocoder, providers=providers)
write_wavs(model, inputs, args.output_dir, external_vocoder=external_vocoder)
else:
warn = "[!] A vocoder is not embedded in the graph nor an external vocoder is provided. The mel output will be written as numpy arrays to `*.npy` files in the output directory"
warnings.warn(warn, UserWarning)
write_mels(model, inputs, args.output_dir)
if __name__ == "__main__":
main()
|