Spaces:
Running
on
L4
Running
on
L4
""" from https://github.com/keithito/tacotron | |
Cleaners are transformations that run over the input text at both training and eval time. | |
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" | |
hyperparameter. Some cleaners are English-specific. You'll typically want to use: | |
1. "english_cleaners" for English text | |
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using | |
the Unidecode library (https://pypi.python.org/pypi/Unidecode) | |
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update | |
the symbols in symbols.py to match your data). | |
""" | |
import logging | |
import re | |
import phonemizer | |
import piper_phonemize | |
from unidecode import unidecode | |
# To avoid excessive logging we set the log level of the phonemizer package to Critical | |
critical_logger = logging.getLogger("phonemizer") | |
critical_logger.setLevel(logging.CRITICAL) | |
# Intializing the phonemizer globally significantly reduces the speed | |
# now the phonemizer is not initialising at every call | |
# Might be less flexible, but it is much-much faster | |
global_phonemizer = phonemizer.backend.EspeakBackend( | |
language="en-us", | |
preserve_punctuation=True, | |
with_stress=True, | |
language_switch="remove-flags", | |
logger=critical_logger, | |
) | |
# Regular expression matching whitespace: | |
_whitespace_re = re.compile(r"\s+") | |
# List of (regular expression, replacement) pairs for abbreviations: | |
_abbreviations = [ | |
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) | |
for x in [ | |
("mrs", "misess"), | |
("mr", "mister"), | |
("dr", "doctor"), | |
("st", "saint"), | |
("co", "company"), | |
("jr", "junior"), | |
("maj", "major"), | |
("gen", "general"), | |
("drs", "doctors"), | |
("rev", "reverend"), | |
("lt", "lieutenant"), | |
("hon", "honorable"), | |
("sgt", "sergeant"), | |
("capt", "captain"), | |
("esq", "esquire"), | |
("ltd", "limited"), | |
("col", "colonel"), | |
("ft", "fort"), | |
] | |
] | |
def expand_abbreviations(text): | |
for regex, replacement in _abbreviations: | |
text = re.sub(regex, replacement, text) | |
return text | |
def lowercase(text): | |
return text.lower() | |
def collapse_whitespace(text): | |
return re.sub(_whitespace_re, " ", text) | |
def convert_to_ascii(text): | |
return unidecode(text) | |
def basic_cleaners(text): | |
"""Basic pipeline that lowercases and collapses whitespace without transliteration.""" | |
text = lowercase(text) | |
text = collapse_whitespace(text) | |
return text | |
def transliteration_cleaners(text): | |
"""Pipeline for non-English text that transliterates to ASCII.""" | |
text = convert_to_ascii(text) | |
text = lowercase(text) | |
text = collapse_whitespace(text) | |
return text | |
def english_cleaners2(text): | |
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress""" | |
text = convert_to_ascii(text) | |
text = lowercase(text) | |
text = expand_abbreviations(text) | |
phonemes = global_phonemizer.phonemize([text], strip=True, njobs=1)[0] | |
phonemes = collapse_whitespace(phonemes) | |
return phonemes | |
def english_cleaners_piper(text): | |
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress""" | |
text = convert_to_ascii(text) | |
text = lowercase(text) | |
text = expand_abbreviations(text) | |
phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0]) | |
phonemes = collapse_whitespace(phonemes) | |
return phonemes | |