Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu) | |
# 2022 Xingchen Song ([email protected]) | |
# 2024 Alibaba Inc (Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified from ESPnet(https://github.com/espnet/espnet) | |
"""Encoder definition.""" | |
from typing import Tuple | |
import torch | |
from torch import nn | |
import torch.utils.checkpoint as ckpt | |
from torch.nn import functional as F | |
from cosyvoice.transformer.convolution import ConvolutionModule | |
from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer | |
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward | |
from cosyvoice.utils.class_utils import ( | |
COSYVOICE_EMB_CLASSES, | |
COSYVOICE_SUBSAMPLE_CLASSES, | |
COSYVOICE_ATTENTION_CLASSES, | |
COSYVOICE_ACTIVATION_CLASSES, | |
) | |
from cosyvoice.utils.mask import make_pad_mask | |
from cosyvoice.utils.mask import add_optional_chunk_mask | |
class Upsample1D(nn.Module): | |
"""A 1D upsampling layer with an optional convolution. | |
Parameters: | |
channels (`int`): | |
number of channels in the inputs and outputs. | |
use_conv (`bool`, default `False`): | |
option to use a convolution. | |
use_conv_transpose (`bool`, default `False`): | |
option to use a convolution transpose. | |
out_channels (`int`, optional): | |
number of output channels. Defaults to `channels`. | |
""" | |
def __init__(self, channels: int, out_channels: int, stride: int=2): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels | |
self.stride = stride | |
# In this mode, first repeat interpolate, than conv with stride=1 | |
self.conv = nn.Conv1d( | |
self.channels, self.out_channels, stride*2+1, stride=1, | |
padding=0, | |
) | |
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor): | |
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest") | |
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0) | |
outputs = self.conv(outputs) | |
return outputs, input_lengths * self.stride | |
class PreLookaheadLayer(nn.Module): | |
def __init__(self, channels: int, pre_lookahead_len: int = 1): | |
super().__init__() | |
self.channels = channels | |
self.pre_lookahead_len = pre_lookahead_len | |
self.conv1 = nn.Conv1d( | |
channels, channels, | |
kernel_size=pre_lookahead_len+1, | |
stride=1, padding=0, | |
) | |
self.conv2 = nn.Conv1d( | |
channels, channels, | |
kernel_size=3, stride=1, padding=0, | |
) | |
def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
""" | |
inputs: (batch_size, seq_len, channels) | |
""" | |
outputs = inputs.transpose(1, 2).contiguous() | |
# look ahead | |
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0) | |
outputs = F.leaky_relu(self.conv1(outputs)) | |
# outputs | |
outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0) | |
outputs = self.conv2(outputs) | |
outputs = outputs.transpose(1, 2).contiguous() | |
# residual connection | |
outputs = outputs + inputs | |
return outputs | |
class UpsampleConformerEncoder(torch.nn.Module): | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int = 256, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
attention_dropout_rate: float = 0.0, | |
input_layer: str = "conv2d", | |
pos_enc_layer_type: str = "rel_pos", | |
normalize_before: bool = True, | |
static_chunk_size: int = 0, | |
use_dynamic_chunk: bool = False, | |
global_cmvn: torch.nn.Module = None, | |
use_dynamic_left_chunk: bool = False, | |
positionwise_conv_kernel_size: int = 1, | |
macaron_style: bool = True, | |
selfattention_layer_type: str = "rel_selfattn", | |
activation_type: str = "swish", | |
use_cnn_module: bool = True, | |
cnn_module_kernel: int = 15, | |
causal: bool = False, | |
cnn_module_norm: str = "batch_norm", | |
key_bias: bool = True, | |
gradient_checkpointing: bool = False, | |
): | |
""" | |
Args: | |
input_size (int): input dim | |
output_size (int): dimension of attention | |
attention_heads (int): the number of heads of multi head attention | |
linear_units (int): the hidden units number of position-wise feed | |
forward | |
num_blocks (int): the number of decoder blocks | |
dropout_rate (float): dropout rate | |
attention_dropout_rate (float): dropout rate in attention | |
positional_dropout_rate (float): dropout rate after adding | |
positional encoding | |
input_layer (str): input layer type. | |
optional [linear, conv2d, conv2d6, conv2d8] | |
pos_enc_layer_type (str): Encoder positional encoding layer type. | |
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos] | |
normalize_before (bool): | |
True: use layer_norm before each sub-block of a layer. | |
False: use layer_norm after each sub-block of a layer. | |
static_chunk_size (int): chunk size for static chunk training and | |
decoding | |
use_dynamic_chunk (bool): whether use dynamic chunk size for | |
training or not, You can only use fixed chunk(chunk_size > 0) | |
or dyanmic chunk size(use_dynamic_chunk = True) | |
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module | |
use_dynamic_left_chunk (bool): whether use dynamic left chunk in | |
dynamic chunk training | |
key_bias: whether use bias in attention.linear_k, False for whisper models. | |
gradient_checkpointing: rerunning a forward-pass segment for each | |
checkpointed segment during backward. | |
""" | |
super().__init__() | |
self._output_size = output_size | |
self.global_cmvn = global_cmvn | |
self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer]( | |
input_size, | |
output_size, | |
dropout_rate, | |
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size, | |
positional_dropout_rate), | |
) | |
self.normalize_before = normalize_before | |
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5) | |
self.static_chunk_size = static_chunk_size | |
self.use_dynamic_chunk = use_dynamic_chunk | |
self.use_dynamic_left_chunk = use_dynamic_left_chunk | |
self.gradient_checkpointing = gradient_checkpointing | |
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]() | |
# self-attention module definition | |
encoder_selfattn_layer_args = ( | |
attention_heads, | |
output_size, | |
attention_dropout_rate, | |
key_bias, | |
) | |
# feed-forward module definition | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
dropout_rate, | |
activation, | |
) | |
# convolution module definition | |
convolution_layer_args = (output_size, cnn_module_kernel, activation, | |
cnn_module_norm, causal) | |
self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3) | |
self.encoders = torch.nn.ModuleList([ | |
ConformerEncoderLayer( | |
output_size, | |
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type]( | |
*encoder_selfattn_layer_args), | |
PositionwiseFeedForward(*positionwise_layer_args), | |
PositionwiseFeedForward( | |
*positionwise_layer_args) if macaron_style else None, | |
ConvolutionModule( | |
*convolution_layer_args) if use_cnn_module else None, | |
dropout_rate, | |
normalize_before, | |
) for _ in range(num_blocks) | |
]) | |
self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2) | |
self.up_embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer]( | |
input_size, | |
output_size, | |
dropout_rate, | |
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size, | |
positional_dropout_rate), | |
) | |
self.up_encoders = torch.nn.ModuleList([ | |
ConformerEncoderLayer( | |
output_size, | |
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type]( | |
*encoder_selfattn_layer_args), | |
PositionwiseFeedForward(*positionwise_layer_args), | |
PositionwiseFeedForward( | |
*positionwise_layer_args) if macaron_style else None, | |
ConvolutionModule( | |
*convolution_layer_args) if use_cnn_module else None, | |
dropout_rate, | |
normalize_before, | |
) for _ in range(4) | |
]) | |
def output_size(self) -> int: | |
return self._output_size | |
def forward( | |
self, | |
xs: torch.Tensor, | |
xs_lens: torch.Tensor, | |
decoding_chunk_size: int = 0, | |
num_decoding_left_chunks: int = -1, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Embed positions in tensor. | |
Args: | |
xs: padded input tensor (B, T, D) | |
xs_lens: input length (B) | |
decoding_chunk_size: decoding chunk size for dynamic chunk | |
0: default for training, use random dynamic chunk. | |
<0: for decoding, use full chunk. | |
>0: for decoding, use fixed chunk size as set. | |
num_decoding_left_chunks: number of left chunks, this is for decoding, | |
the chunk size is decoding_chunk_size. | |
>=0: use num_decoding_left_chunks | |
<0: use all left chunks | |
Returns: | |
encoder output tensor xs, and subsampled masks | |
xs: padded output tensor (B, T' ~= T/subsample_rate, D) | |
masks: torch.Tensor batch padding mask after subsample | |
(B, 1, T' ~= T/subsample_rate) | |
NOTE(xcsong): | |
We pass the `__call__` method of the modules instead of `forward` to the | |
checkpointing API because `__call__` attaches all the hooks of the module. | |
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 | |
""" | |
T = xs.size(1) | |
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) | |
if self.global_cmvn is not None: | |
xs = self.global_cmvn(xs) | |
xs, pos_emb, masks = self.embed(xs, masks) | |
mask_pad = masks # (B, 1, T/subsample_rate) | |
chunk_masks = add_optional_chunk_mask(xs, masks, | |
self.use_dynamic_chunk, | |
self.use_dynamic_left_chunk, | |
decoding_chunk_size, | |
self.static_chunk_size, | |
num_decoding_left_chunks) | |
# lookahead + conformer encoder | |
xs = self.pre_lookahead_layer(xs) | |
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad) | |
# upsample + conformer encoder | |
xs = xs.transpose(1, 2).contiguous() | |
xs, xs_lens = self.up_layer(xs, xs_lens) | |
xs = xs.transpose(1, 2).contiguous() | |
T = xs.size(1) | |
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) | |
xs, pos_emb, masks = self.up_embed(xs, masks) | |
mask_pad = masks # (B, 1, T/subsample_rate) | |
chunk_masks = add_optional_chunk_mask(xs, masks, | |
self.use_dynamic_chunk, | |
self.use_dynamic_left_chunk, | |
decoding_chunk_size, | |
self.static_chunk_size * self.up_layer.stride, | |
num_decoding_left_chunks) | |
xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad) | |
if self.normalize_before: | |
xs = self.after_norm(xs) | |
# Here we assume the mask is not changed in encoder layers, so just | |
# return the masks before encoder layers, and the masks will be used | |
# for cross attention with decoder later | |
return xs, masks | |
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, | |
pos_emb: torch.Tensor, | |
mask_pad: torch.Tensor) -> torch.Tensor: | |
for layer in self.encoders: | |
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) | |
return xs | |
def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, | |
pos_emb: torch.Tensor, | |
mask_pad: torch.Tensor) -> torch.Tensor: | |
for layer in self.up_encoders: | |
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) | |
return xs | |