Spaces:
Running
on
L4
Running
on
L4
import random | |
from typing import Any, Dict, Optional | |
import torch | |
import torchaudio as ta | |
from lightning import LightningDataModule | |
from torch.utils.data.dataloader import DataLoader | |
from matcha.text import text_to_sequence | |
from matcha.utils.audio import mel_spectrogram | |
from matcha.utils.model import fix_len_compatibility, normalize | |
from matcha.utils.utils import intersperse | |
def parse_filelist(filelist_path, split_char="|"): | |
with open(filelist_path, encoding="utf-8") as f: | |
filepaths_and_text = [line.strip().split(split_char) for line in f] | |
return filepaths_and_text | |
class TextMelDataModule(LightningDataModule): | |
def __init__( # pylint: disable=unused-argument | |
self, | |
name, | |
train_filelist_path, | |
valid_filelist_path, | |
batch_size, | |
num_workers, | |
pin_memory, | |
cleaners, | |
add_blank, | |
n_spks, | |
n_fft, | |
n_feats, | |
sample_rate, | |
hop_length, | |
win_length, | |
f_min, | |
f_max, | |
data_statistics, | |
seed, | |
): | |
super().__init__() | |
# this line allows to access init params with 'self.hparams' attribute | |
# also ensures init params will be stored in ckpt | |
self.save_hyperparameters(logger=False) | |
def setup(self, stage: Optional[str] = None): # pylint: disable=unused-argument | |
"""Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`. | |
This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be | |
careful not to execute things like random split twice! | |
""" | |
# load and split datasets only if not loaded already | |
self.trainset = TextMelDataset( # pylint: disable=attribute-defined-outside-init | |
self.hparams.train_filelist_path, | |
self.hparams.n_spks, | |
self.hparams.cleaners, | |
self.hparams.add_blank, | |
self.hparams.n_fft, | |
self.hparams.n_feats, | |
self.hparams.sample_rate, | |
self.hparams.hop_length, | |
self.hparams.win_length, | |
self.hparams.f_min, | |
self.hparams.f_max, | |
self.hparams.data_statistics, | |
self.hparams.seed, | |
) | |
self.validset = TextMelDataset( # pylint: disable=attribute-defined-outside-init | |
self.hparams.valid_filelist_path, | |
self.hparams.n_spks, | |
self.hparams.cleaners, | |
self.hparams.add_blank, | |
self.hparams.n_fft, | |
self.hparams.n_feats, | |
self.hparams.sample_rate, | |
self.hparams.hop_length, | |
self.hparams.win_length, | |
self.hparams.f_min, | |
self.hparams.f_max, | |
self.hparams.data_statistics, | |
self.hparams.seed, | |
) | |
def train_dataloader(self): | |
return DataLoader( | |
dataset=self.trainset, | |
batch_size=self.hparams.batch_size, | |
num_workers=self.hparams.num_workers, | |
pin_memory=self.hparams.pin_memory, | |
shuffle=True, | |
collate_fn=TextMelBatchCollate(self.hparams.n_spks), | |
) | |
def val_dataloader(self): | |
return DataLoader( | |
dataset=self.validset, | |
batch_size=self.hparams.batch_size, | |
num_workers=self.hparams.num_workers, | |
pin_memory=self.hparams.pin_memory, | |
shuffle=False, | |
collate_fn=TextMelBatchCollate(self.hparams.n_spks), | |
) | |
def teardown(self, stage: Optional[str] = None): | |
"""Clean up after fit or test.""" | |
pass # pylint: disable=unnecessary-pass | |
def state_dict(self): # pylint: disable=no-self-use | |
"""Extra things to save to checkpoint.""" | |
return {} | |
def load_state_dict(self, state_dict: Dict[str, Any]): | |
"""Things to do when loading checkpoint.""" | |
pass # pylint: disable=unnecessary-pass | |
class TextMelDataset(torch.utils.data.Dataset): | |
def __init__( | |
self, | |
filelist_path, | |
n_spks, | |
cleaners, | |
add_blank=True, | |
n_fft=1024, | |
n_mels=80, | |
sample_rate=22050, | |
hop_length=256, | |
win_length=1024, | |
f_min=0.0, | |
f_max=8000, | |
data_parameters=None, | |
seed=None, | |
): | |
self.filepaths_and_text = parse_filelist(filelist_path) | |
self.n_spks = n_spks | |
self.cleaners = cleaners | |
self.add_blank = add_blank | |
self.n_fft = n_fft | |
self.n_mels = n_mels | |
self.sample_rate = sample_rate | |
self.hop_length = hop_length | |
self.win_length = win_length | |
self.f_min = f_min | |
self.f_max = f_max | |
if data_parameters is not None: | |
self.data_parameters = data_parameters | |
else: | |
self.data_parameters = {"mel_mean": 0, "mel_std": 1} | |
random.seed(seed) | |
random.shuffle(self.filepaths_and_text) | |
def get_datapoint(self, filepath_and_text): | |
if self.n_spks > 1: | |
filepath, spk, text = ( | |
filepath_and_text[0], | |
int(filepath_and_text[1]), | |
filepath_and_text[2], | |
) | |
else: | |
filepath, text = filepath_and_text[0], filepath_and_text[1] | |
spk = None | |
text = self.get_text(text, add_blank=self.add_blank) | |
mel = self.get_mel(filepath) | |
return {"x": text, "y": mel, "spk": spk} | |
def get_mel(self, filepath): | |
audio, sr = ta.load(filepath) | |
assert sr == self.sample_rate | |
mel = mel_spectrogram( | |
audio, | |
self.n_fft, | |
self.n_mels, | |
self.sample_rate, | |
self.hop_length, | |
self.win_length, | |
self.f_min, | |
self.f_max, | |
center=False, | |
).squeeze() | |
mel = normalize(mel, self.data_parameters["mel_mean"], self.data_parameters["mel_std"]) | |
return mel | |
def get_text(self, text, add_blank=True): | |
text_norm = text_to_sequence(text, self.cleaners) | |
if self.add_blank: | |
text_norm = intersperse(text_norm, 0) | |
text_norm = torch.IntTensor(text_norm) | |
return text_norm | |
def __getitem__(self, index): | |
datapoint = self.get_datapoint(self.filepaths_and_text[index]) | |
return datapoint | |
def __len__(self): | |
return len(self.filepaths_and_text) | |
class TextMelBatchCollate: | |
def __init__(self, n_spks): | |
self.n_spks = n_spks | |
def __call__(self, batch): | |
B = len(batch) | |
y_max_length = max([item["y"].shape[-1] for item in batch]) | |
y_max_length = fix_len_compatibility(y_max_length) | |
x_max_length = max([item["x"].shape[-1] for item in batch]) | |
n_feats = batch[0]["y"].shape[-2] | |
y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32) | |
x = torch.zeros((B, x_max_length), dtype=torch.long) | |
y_lengths, x_lengths = [], [] | |
spks = [] | |
for i, item in enumerate(batch): | |
y_, x_ = item["y"], item["x"] | |
y_lengths.append(y_.shape[-1]) | |
x_lengths.append(x_.shape[-1]) | |
y[i, :, : y_.shape[-1]] = y_ | |
x[i, : x_.shape[-1]] = x_ | |
spks.append(item["spk"]) | |
y_lengths = torch.tensor(y_lengths, dtype=torch.long) | |
x_lengths = torch.tensor(x_lengths, dtype=torch.long) | |
spks = torch.tensor(spks, dtype=torch.long) if self.n_spks > 1 else None | |
return {"x": x, "x_lengths": x_lengths, "y": y, "y_lengths": y_lengths, "spks": spks} | |