Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import time | |
from tqdm import tqdm | |
from hyperpyyaml import load_hyperpyyaml | |
from modelscope import snapshot_download | |
import torch | |
from cosyvoice.cli.frontend import CosyVoiceFrontEnd | |
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model | |
from cosyvoice.utils.file_utils import logging | |
class CosyVoice: | |
def __init__(self, model_dir, load_jit=True, load_onnx=False, fp16=True): | |
instruct = True if '-Instruct' in model_dir else False | |
self.model_dir = model_dir | |
if not os.path.exists(model_dir): | |
model_dir = snapshot_download(model_dir) | |
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f: | |
configs = load_hyperpyyaml(f) | |
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'], | |
configs['feat_extractor'], | |
'{}/campplus.onnx'.format(model_dir), | |
'{}/speech_tokenizer_v1.onnx'.format(model_dir), | |
'{}/spk2info.pt'.format(model_dir), | |
instruct, | |
configs['allowed_special']) | |
self.sample_rate = configs['sample_rate'] | |
if torch.cuda.is_available() is False and (fp16 is True or load_jit is True): | |
load_jit = False | |
fp16 = False | |
logging.warning('cpu do not support fp16 and jit, force set to False') | |
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16) | |
self.model.load('{}/llm.pt'.format(model_dir), | |
'{}/flow.pt'.format(model_dir), | |
'{}/hift.pt'.format(model_dir)) | |
if load_jit: | |
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir), | |
'{}/llm.llm.fp16.zip'.format(model_dir), | |
'{}/flow.encoder.fp32.zip'.format(model_dir)) | |
if load_onnx: | |
self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir)) | |
del configs | |
def list_avaliable_spks(self): | |
spks = list(self.frontend.spk2info.keys()) | |
return spks | |
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0): | |
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): | |
model_input = self.frontend.frontend_sft(i, spk_id) | |
start_time = time.time() | |
logging.info('synthesis text {}'.format(i)) | |
for model_output in self.model.tts(**model_input, stream=stream, speed=speed): | |
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate | |
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) | |
yield model_output | |
start_time = time.time() | |
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0): | |
prompt_text = self.frontend.text_normalize(prompt_text, split=False) | |
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): | |
if len(i) < 0.5 * len(prompt_text): | |
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text)) | |
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate) | |
start_time = time.time() | |
logging.info('synthesis text {}'.format(i)) | |
for model_output in self.model.tts(**model_input, stream=stream, speed=speed): | |
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate | |
logging.info('yield speech len {}, rtf {}, abs mean {}, std {}'.format(speech_len, (time.time() - start_time) / speech_len, model_output['tts_speech'].abs().mean(), model_output['tts_speech'].std())) | |
yield model_output | |
start_time = time.time() | |
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0): | |
if self.frontend.instruct is True: | |
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir)) | |
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): | |
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate) | |
start_time = time.time() | |
logging.info('synthesis text {}'.format(i)) | |
for model_output in self.model.tts(**model_input, stream=stream, speed=speed): | |
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate | |
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) | |
yield model_output | |
start_time = time.time() | |
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0): | |
if self.frontend.instruct is False: | |
raise ValueError('{} do not support instruct inference'.format(self.model_dir)) | |
instruct_text = self.frontend.text_normalize(instruct_text, split=False) | |
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): | |
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text) | |
start_time = time.time() | |
logging.info('synthesis text {}'.format(i)) | |
for model_output in self.model.tts(**model_input, stream=stream, speed=speed): | |
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate | |
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) | |
yield model_output | |
start_time = time.time() | |
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0): | |
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): | |
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate) | |
start_time = time.time() | |
logging.info('synthesis text {}'.format(i)) | |
for model_output in self.model.tts(**model_input, stream=stream, speed=speed): | |
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate | |
logging.info('yield speech len {}, rtf {}, abs mean {}, std {}'.format(speech_len, (time.time() - start_time) / speech_len, model_output['tts_speech'].abs().mean(), model_output['tts_speech'].std())) | |
yield model_output | |
start_time = time.time() | |
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0): | |
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate) | |
start_time = time.time() | |
for model_output in self.model.vc(**model_input, stream=stream, speed=speed): | |
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate | |
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) | |
yield model_output | |
start_time = time.time() | |
class CosyVoice2(CosyVoice): | |
def __init__(self, model_dir, load_jit=False, load_onnx=False, load_trt=False): | |
instruct = True if '-Instruct' in model_dir else False | |
self.model_dir = model_dir | |
if not os.path.exists(model_dir): | |
model_dir = snapshot_download(model_dir) | |
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f: | |
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')}) | |
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'], | |
configs['feat_extractor'], | |
'{}/campplus.onnx'.format(model_dir), | |
'{}/speech_tokenizer_v2.onnx'.format(model_dir), | |
'{}/spk2info.pt'.format(model_dir), | |
instruct, | |
configs['allowed_special']) | |
self.sample_rate = configs['sample_rate'] | |
if torch.cuda.is_available() is False and load_jit is True: | |
load_jit = False | |
logging.warning('cpu do not support jit, force set to False') | |
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift']) | |
self.model.load('{}/llm.pt'.format(model_dir), | |
'{}/flow.pt'.format(model_dir), | |
'{}/hift.pt'.format(model_dir)) | |
if load_jit: | |
self.model.load_jit('{}/flow.encoder.fp32.zip'.format(model_dir)) | |
if load_trt is True and load_onnx is True: | |
load_onnx = False | |
logging.warning('can not set both load_trt and load_onnx to True, force set load_onnx to False') | |
if load_onnx: | |
self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir)) | |
if load_trt: | |
self.model.load_trt('{}/flow.decoder.estimator.fp16.l20.plan'.format(model_dir)) | |
del configs |