Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu) | |
# 2022 Xingchen Song ([email protected]) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified from ESPnet(https://github.com/espnet/espnet) | |
"""Encoder self-attention layer definition.""" | |
from typing import Optional, Tuple | |
import torch | |
from torch import nn | |
class TransformerEncoderLayer(nn.Module): | |
"""Encoder layer module. | |
Args: | |
size (int): Input dimension. | |
self_attn (torch.nn.Module): Self-attention module instance. | |
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` | |
instance can be used as the argument. | |
feed_forward (torch.nn.Module): Feed-forward module instance. | |
`PositionwiseFeedForward`, instance can be used as the argument. | |
dropout_rate (float): Dropout rate. | |
normalize_before (bool): | |
True: use layer_norm before each sub-block. | |
False: to use layer_norm after each sub-block. | |
""" | |
def __init__( | |
self, | |
size: int, | |
self_attn: torch.nn.Module, | |
feed_forward: torch.nn.Module, | |
dropout_rate: float, | |
normalize_before: bool = True, | |
): | |
"""Construct an EncoderLayer object.""" | |
super().__init__() | |
self.self_attn = self_attn | |
self.feed_forward = feed_forward | |
self.norm1 = nn.LayerNorm(size, eps=1e-12) | |
self.norm2 = nn.LayerNorm(size, eps=1e-12) | |
self.dropout = nn.Dropout(dropout_rate) | |
self.size = size | |
self.normalize_before = normalize_before | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask: torch.Tensor, | |
pos_emb: torch.Tensor, | |
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Compute encoded features. | |
Args: | |
x (torch.Tensor): (#batch, time, size) | |
mask (torch.Tensor): Mask tensor for the input (#batch, time,time), | |
(0, 0, 0) means fake mask. | |
pos_emb (torch.Tensor): just for interface compatibility | |
to ConformerEncoderLayer | |
mask_pad (torch.Tensor): does not used in transformer layer, | |
just for unified api with conformer. | |
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE | |
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size. | |
cnn_cache (torch.Tensor): Convolution cache in conformer layer | |
(#batch=1, size, cache_t2), not used here, it's for interface | |
compatibility to ConformerEncoderLayer. | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, size). | |
torch.Tensor: Mask tensor (#batch, time, time). | |
torch.Tensor: att_cache tensor, | |
(#batch=1, head, cache_t1 + time, d_k * 2). | |
torch.Tensor: cnn_cahce tensor (#batch=1, size, cache_t2). | |
""" | |
residual = x | |
if self.normalize_before: | |
x = self.norm1(x) | |
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb=pos_emb, cache=att_cache) | |
x = residual + self.dropout(x_att) | |
if not self.normalize_before: | |
x = self.norm1(x) | |
residual = x | |
if self.normalize_before: | |
x = self.norm2(x) | |
x = residual + self.dropout(self.feed_forward(x)) | |
if not self.normalize_before: | |
x = self.norm2(x) | |
fake_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) | |
return x, mask, new_att_cache, fake_cnn_cache | |
class ConformerEncoderLayer(nn.Module): | |
"""Encoder layer module. | |
Args: | |
size (int): Input dimension. | |
self_attn (torch.nn.Module): Self-attention module instance. | |
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` | |
instance can be used as the argument. | |
feed_forward (torch.nn.Module): Feed-forward module instance. | |
`PositionwiseFeedForward` instance can be used as the argument. | |
feed_forward_macaron (torch.nn.Module): Additional feed-forward module | |
instance. | |
`PositionwiseFeedForward` instance can be used as the argument. | |
conv_module (torch.nn.Module): Convolution module instance. | |
`ConvlutionModule` instance can be used as the argument. | |
dropout_rate (float): Dropout rate. | |
normalize_before (bool): | |
True: use layer_norm before each sub-block. | |
False: use layer_norm after each sub-block. | |
""" | |
def __init__( | |
self, | |
size: int, | |
self_attn: torch.nn.Module, | |
feed_forward: Optional[nn.Module] = None, | |
feed_forward_macaron: Optional[nn.Module] = None, | |
conv_module: Optional[nn.Module] = None, | |
dropout_rate: float = 0.1, | |
normalize_before: bool = True, | |
): | |
"""Construct an EncoderLayer object.""" | |
super().__init__() | |
self.self_attn = self_attn | |
self.feed_forward = feed_forward | |
self.feed_forward_macaron = feed_forward_macaron | |
self.conv_module = conv_module | |
self.norm_ff = nn.LayerNorm(size, eps=1e-12) # for the FNN module | |
self.norm_mha = nn.LayerNorm(size, eps=1e-12) # for the MHA module | |
if feed_forward_macaron is not None: | |
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-12) | |
self.ff_scale = 0.5 | |
else: | |
self.ff_scale = 1.0 | |
if self.conv_module is not None: | |
self.norm_conv = nn.LayerNorm(size, eps=1e-12) # for the CNN module | |
self.norm_final = nn.LayerNorm( | |
size, eps=1e-12) # for the final output of the block | |
self.dropout = nn.Dropout(dropout_rate) | |
self.size = size | |
self.normalize_before = normalize_before | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask: torch.Tensor, | |
pos_emb: torch.Tensor, | |
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Compute encoded features. | |
Args: | |
x (torch.Tensor): (#batch, time, size) | |
mask (torch.Tensor): Mask tensor for the input (#batch, time,time), | |
(0, 0, 0) means fake mask. | |
pos_emb (torch.Tensor): positional encoding, must not be None | |
for ConformerEncoderLayer. | |
mask_pad (torch.Tensor): batch padding mask used for conv module. | |
(#batch, 1,time), (0, 0, 0) means fake mask. | |
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE | |
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size. | |
cnn_cache (torch.Tensor): Convolution cache in conformer layer | |
(#batch=1, size, cache_t2) | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, size). | |
torch.Tensor: Mask tensor (#batch, time, time). | |
torch.Tensor: att_cache tensor, | |
(#batch=1, head, cache_t1 + time, d_k * 2). | |
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2). | |
""" | |
# whether to use macaron style | |
if self.feed_forward_macaron is not None: | |
residual = x | |
if self.normalize_before: | |
x = self.norm_ff_macaron(x) | |
x = residual + self.ff_scale * self.dropout( | |
self.feed_forward_macaron(x)) | |
if not self.normalize_before: | |
x = self.norm_ff_macaron(x) | |
# multi-headed self-attention module | |
residual = x | |
if self.normalize_before: | |
x = self.norm_mha(x) | |
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, | |
att_cache) | |
x = residual + self.dropout(x_att) | |
if not self.normalize_before: | |
x = self.norm_mha(x) | |
# convolution module | |
# Fake new cnn cache here, and then change it in conv_module | |
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) | |
if self.conv_module is not None: | |
residual = x | |
if self.normalize_before: | |
x = self.norm_conv(x) | |
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache) | |
x = residual + self.dropout(x) | |
if not self.normalize_before: | |
x = self.norm_conv(x) | |
# feed forward module | |
residual = x | |
if self.normalize_before: | |
x = self.norm_ff(x) | |
x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) | |
if not self.normalize_before: | |
x = self.norm_ff(x) | |
if self.conv_module is not None: | |
x = self.norm_final(x) | |
return x, mask, new_att_cache, new_cnn_cache | |