Spaces:
Running
on
L4
Running
on
L4
r""" | |
The file creates a pickle file where the values needed for loading of dataset is stored and the model can load it | |
when needed. | |
Parameters from hparam.py will be used | |
""" | |
import argparse | |
import json | |
import os | |
import sys | |
from pathlib import Path | |
import rootutils | |
import torch | |
from hydra import compose, initialize | |
from omegaconf import open_dict | |
from tqdm.auto import tqdm | |
from matcha.data.text_mel_datamodule import TextMelDataModule | |
from matcha.utils.logging_utils import pylogger | |
log = pylogger.get_pylogger(__name__) | |
def compute_data_statistics(data_loader: torch.utils.data.DataLoader, out_channels: int): | |
"""Generate data mean and standard deviation helpful in data normalisation | |
Args: | |
data_loader (torch.utils.data.Dataloader): _description_ | |
out_channels (int): mel spectrogram channels | |
""" | |
total_mel_sum = 0 | |
total_mel_sq_sum = 0 | |
total_mel_len = 0 | |
for batch in tqdm(data_loader, leave=False): | |
mels = batch["y"] | |
mel_lengths = batch["y_lengths"] | |
total_mel_len += torch.sum(mel_lengths) | |
total_mel_sum += torch.sum(mels) | |
total_mel_sq_sum += torch.sum(torch.pow(mels, 2)) | |
data_mean = total_mel_sum / (total_mel_len * out_channels) | |
data_std = torch.sqrt((total_mel_sq_sum / (total_mel_len * out_channels)) - torch.pow(data_mean, 2)) | |
return {"mel_mean": data_mean.item(), "mel_std": data_std.item()} | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-i", | |
"--input-config", | |
type=str, | |
default="vctk.yaml", | |
help="The name of the yaml config file under configs/data", | |
) | |
parser.add_argument( | |
"-b", | |
"--batch-size", | |
type=int, | |
default="256", | |
help="Can have increased batch size for faster computation", | |
) | |
parser.add_argument( | |
"-f", | |
"--force", | |
action="store_true", | |
default=False, | |
required=False, | |
help="force overwrite the file", | |
) | |
args = parser.parse_args() | |
output_file = Path(args.input_config).with_suffix(".json") | |
if os.path.exists(output_file) and not args.force: | |
print("File already exists. Use -f to force overwrite") | |
sys.exit(1) | |
with initialize(version_base="1.3", config_path="../../configs/data"): | |
cfg = compose(config_name=args.input_config, return_hydra_config=True, overrides=[]) | |
root_path = rootutils.find_root(search_from=__file__, indicator=".project-root") | |
with open_dict(cfg): | |
del cfg["hydra"] | |
del cfg["_target_"] | |
cfg["data_statistics"] = None | |
cfg["seed"] = 1234 | |
cfg["batch_size"] = args.batch_size | |
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"])) | |
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"])) | |
text_mel_datamodule = TextMelDataModule(**cfg) | |
text_mel_datamodule.setup() | |
data_loader = text_mel_datamodule.train_dataloader() | |
log.info("Dataloader loaded! Now computing stats...") | |
params = compute_data_statistics(data_loader, cfg["n_feats"]) | |
print(params) | |
json.dump( | |
params, | |
open(output_file, "w"), | |
) | |
if __name__ == "__main__": | |
main() | |