Spaces:
Running
on
L4
Running
on
L4
import base64 | |
import os | |
from functools import lru_cache | |
from typing import Optional | |
import torch | |
from transformers import AutoTokenizer | |
from whisper.tokenizer import Tokenizer | |
import tiktoken | |
LANGUAGES = { | |
"en": "english", | |
"zh": "chinese", | |
"de": "german", | |
"es": "spanish", | |
"ru": "russian", | |
"ko": "korean", | |
"fr": "french", | |
"ja": "japanese", | |
"pt": "portuguese", | |
"tr": "turkish", | |
"pl": "polish", | |
"ca": "catalan", | |
"nl": "dutch", | |
"ar": "arabic", | |
"sv": "swedish", | |
"it": "italian", | |
"id": "indonesian", | |
"hi": "hindi", | |
"fi": "finnish", | |
"vi": "vietnamese", | |
"he": "hebrew", | |
"uk": "ukrainian", | |
"el": "greek", | |
"ms": "malay", | |
"cs": "czech", | |
"ro": "romanian", | |
"da": "danish", | |
"hu": "hungarian", | |
"ta": "tamil", | |
"no": "norwegian", | |
"th": "thai", | |
"ur": "urdu", | |
"hr": "croatian", | |
"bg": "bulgarian", | |
"lt": "lithuanian", | |
"la": "latin", | |
"mi": "maori", | |
"ml": "malayalam", | |
"cy": "welsh", | |
"sk": "slovak", | |
"te": "telugu", | |
"fa": "persian", | |
"lv": "latvian", | |
"bn": "bengali", | |
"sr": "serbian", | |
"az": "azerbaijani", | |
"sl": "slovenian", | |
"kn": "kannada", | |
"et": "estonian", | |
"mk": "macedonian", | |
"br": "breton", | |
"eu": "basque", | |
"is": "icelandic", | |
"hy": "armenian", | |
"ne": "nepali", | |
"mn": "mongolian", | |
"bs": "bosnian", | |
"kk": "kazakh", | |
"sq": "albanian", | |
"sw": "swahili", | |
"gl": "galician", | |
"mr": "marathi", | |
"pa": "punjabi", | |
"si": "sinhala", | |
"km": "khmer", | |
"sn": "shona", | |
"yo": "yoruba", | |
"so": "somali", | |
"af": "afrikaans", | |
"oc": "occitan", | |
"ka": "georgian", | |
"be": "belarusian", | |
"tg": "tajik", | |
"sd": "sindhi", | |
"gu": "gujarati", | |
"am": "amharic", | |
"yi": "yiddish", | |
"lo": "lao", | |
"uz": "uzbek", | |
"fo": "faroese", | |
"ht": "haitian creole", | |
"ps": "pashto", | |
"tk": "turkmen", | |
"nn": "nynorsk", | |
"mt": "maltese", | |
"sa": "sanskrit", | |
"lb": "luxembourgish", | |
"my": "myanmar", | |
"bo": "tibetan", | |
"tl": "tagalog", | |
"mg": "malagasy", | |
"as": "assamese", | |
"tt": "tatar", | |
"haw": "hawaiian", | |
"ln": "lingala", | |
"ha": "hausa", | |
"ba": "bashkir", | |
"jw": "javanese", | |
"su": "sundanese", | |
"yue": "cantonese", | |
"minnan": "minnan", | |
"wuyu": "wuyu", | |
"dialect": "dialect", | |
"zh/en": "zh/en", | |
"en/zh": "en/zh", | |
} | |
# language code lookup by name, with a few language aliases | |
TO_LANGUAGE_CODE = { | |
**{language: code for code, language in LANGUAGES.items()}, | |
"burmese": "my", | |
"valencian": "ca", | |
"flemish": "nl", | |
"haitian": "ht", | |
"letzeburgesch": "lb", | |
"pushto": "ps", | |
"panjabi": "pa", | |
"moldavian": "ro", | |
"moldovan": "ro", | |
"sinhalese": "si", | |
"castilian": "es", | |
"mandarin": "zh", | |
} | |
AUDIO_EVENT = { | |
"ASR": "ASR", | |
"AED": "AED", | |
"SER": "SER", | |
"Speech": "Speech", | |
"/Speech": "/Speech", | |
"BGM": "BGM", | |
"/BGM": "/BGM", | |
"Laughter": "Laughter", | |
"/Laughter": "/Laughter", | |
"Applause": "Applause", | |
"/Applause": "/Applause", | |
} | |
EMOTION = { | |
"HAPPY": "HAPPY", | |
"SAD": "SAD", | |
"ANGRY": "ANGRY", | |
"NEUTRAL": "NEUTRAL", | |
} | |
TTS_Vocal_Token = { | |
"TTS/B": "TTS/B", | |
"TTS/O": "TTS/O", | |
"TTS/Q": "TTS/Q", | |
"TTS/A": "TTS/A", | |
"TTS/CO": "TTS/CO", | |
"TTS/CL": "TTS/CL", | |
"TTS/H": "TTS/H", | |
**{f"TTS/SP{i:02d}": f"TTS/SP{i:02d}" for i in range(1, 14)} | |
} | |
def get_encoding(name: str = "gpt2", num_languages: int = 99): | |
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken") | |
ranks = { | |
base64.b64decode(token): int(rank) | |
for token, rank in (line.split() for line in open(vocab_path) if line) | |
} | |
n_vocab = len(ranks) | |
special_tokens = {} | |
specials = [ | |
"<|endoftext|>", | |
"<|startoftranscript|>", | |
*[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]], | |
*[f"<|{audio_event}|>" for audio_event in list(AUDIO_EVENT.keys())], | |
*[f"<|{emotion}|>" for emotion in list(EMOTION.keys())], | |
"<|translate|>", | |
"<|transcribe|>", | |
"<|startoflm|>", | |
"<|startofprev|>", | |
"<|nospeech|>", | |
"<|notimestamps|>", | |
*[f"<|SPECIAL_TOKEN_{i}|>" for i in range(1, 31)], # register special tokens for ASR | |
*[f"<|{tts}|>" for tts in list(TTS_Vocal_Token.keys())], # register special tokens for TTS | |
*[f"<|{i * 0.02:.2f}|>" for i in range(1501)], | |
] | |
for token in specials: | |
special_tokens[token] = n_vocab | |
n_vocab += 1 | |
return tiktoken.Encoding( | |
name=os.path.basename(vocab_path), | |
explicit_n_vocab=n_vocab, | |
pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""", | |
mergeable_ranks=ranks, | |
special_tokens=special_tokens, | |
) | |
def get_tokenizer( | |
multilingual: bool, | |
*, | |
num_languages: int = 99, | |
language: Optional[str] = None, | |
task: Optional[str] = None, # Literal["transcribe", "translate", None] | |
) -> Tokenizer: | |
if language is not None: | |
language = language.lower() | |
if language not in LANGUAGES: | |
if language in TO_LANGUAGE_CODE: | |
language = TO_LANGUAGE_CODE[language] | |
else: | |
raise ValueError(f"Unsupported language: {language}") | |
if multilingual: | |
encoding_name = "multilingual_zh_ja_yue_char_del" | |
language = language or "en" | |
task = task or "transcribe" | |
else: | |
encoding_name = "gpt2" | |
language = None | |
task = None | |
encoding = get_encoding(name=encoding_name, num_languages=num_languages) | |
return Tokenizer( | |
encoding=encoding, num_languages=num_languages, language=language, task=task | |
) | |
class QwenTokenizer(): | |
def __init__(self, token_path, skip_special_tokens=True): | |
super().__init__() | |
# NOTE: non-chat model, all these special tokens keep randomly initialized. | |
special_tokens = { | |
'eos_token': '<|endoftext|>', | |
'pad_token': '<|endoftext|>', | |
'additional_special_tokens': [ | |
'<|im_start|>', '<|im_end|>', '<|endofprompt|>', | |
'[breath]', '<strong>', '</strong>', '[noise]', | |
'[laughter]', '[cough]', '[clucking]', '[accent]', | |
'[quick_breath]', | |
"<laughter>", "</laughter>", | |
"[hissing]", "[sigh]", "[vocalized-noise]", | |
"[lipsmack]", "[mn]" | |
] | |
} | |
self.tokenizer = AutoTokenizer.from_pretrained(token_path) | |
self.tokenizer.add_special_tokens(special_tokens) | |
self.skip_special_tokens = skip_special_tokens | |
def encode(self, text, **kwargs): | |
tokens = self.tokenizer([text], return_tensors="pt") | |
tokens = tokens["input_ids"][0].cpu().tolist() | |
return tokens | |
def decode(self, tokens): | |
tokens = torch.tensor(tokens, dtype=torch.int64) | |
text = self.tokenizer.batch_decode([tokens], skip_special_tokens=self.skip_special_tokens)[0] | |
return text | |
def get_qwen_tokenizer( | |
token_path: str, | |
skip_special_tokens: bool | |
) -> QwenTokenizer: | |
return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens) |