Spaces:
Running
on
L4
Running
on
L4
import datetime as dt | |
import math | |
import random | |
import torch | |
import matcha.utils.monotonic_align as monotonic_align | |
from matcha import utils | |
from matcha.models.baselightningmodule import BaseLightningClass | |
from matcha.models.components.flow_matching import CFM | |
from matcha.models.components.text_encoder import TextEncoder | |
from matcha.utils.model import ( | |
denormalize, | |
duration_loss, | |
fix_len_compatibility, | |
generate_path, | |
sequence_mask, | |
) | |
log = utils.get_pylogger(__name__) | |
class MatchaTTS(BaseLightningClass): # 🍵 | |
def __init__( | |
self, | |
n_vocab, | |
n_spks, | |
spk_emb_dim, | |
n_feats, | |
encoder, | |
decoder, | |
cfm, | |
data_statistics, | |
out_size, | |
optimizer=None, | |
scheduler=None, | |
prior_loss=True, | |
): | |
super().__init__() | |
self.save_hyperparameters(logger=False) | |
self.n_vocab = n_vocab | |
self.n_spks = n_spks | |
self.spk_emb_dim = spk_emb_dim | |
self.n_feats = n_feats | |
self.out_size = out_size | |
self.prior_loss = prior_loss | |
if n_spks > 1: | |
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim) | |
self.encoder = TextEncoder( | |
encoder.encoder_type, | |
encoder.encoder_params, | |
encoder.duration_predictor_params, | |
n_vocab, | |
n_spks, | |
spk_emb_dim, | |
) | |
self.decoder = CFM( | |
in_channels=2 * encoder.encoder_params.n_feats, | |
out_channel=encoder.encoder_params.n_feats, | |
cfm_params=cfm, | |
decoder_params=decoder, | |
n_spks=n_spks, | |
spk_emb_dim=spk_emb_dim, | |
) | |
self.update_data_statistics(data_statistics) | |
def synthesise(self, x, x_lengths, n_timesteps, temperature=1.0, spks=None, length_scale=1.0): | |
""" | |
Generates mel-spectrogram from text. Returns: | |
1. encoder outputs | |
2. decoder outputs | |
3. generated alignment | |
Args: | |
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids. | |
shape: (batch_size, max_text_length) | |
x_lengths (torch.Tensor): lengths of texts in batch. | |
shape: (batch_size,) | |
n_timesteps (int): number of steps to use for reverse diffusion in decoder. | |
temperature (float, optional): controls variance of terminal distribution. | |
spks (bool, optional): speaker ids. | |
shape: (batch_size,) | |
length_scale (float, optional): controls speech pace. | |
Increase value to slow down generated speech and vice versa. | |
Returns: | |
dict: { | |
"encoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length), | |
# Average mel spectrogram generated by the encoder | |
"decoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length), | |
# Refined mel spectrogram improved by the CFM | |
"attn": torch.Tensor, shape: (batch_size, max_text_length, max_mel_length), | |
# Alignment map between text and mel spectrogram | |
"mel": torch.Tensor, shape: (batch_size, n_feats, max_mel_length), | |
# Denormalized mel spectrogram | |
"mel_lengths": torch.Tensor, shape: (batch_size,), | |
# Lengths of mel spectrograms | |
"rtf": float, | |
# Real-time factor | |
""" | |
# For RTF computation | |
t = dt.datetime.now() | |
if self.n_spks > 1: | |
# Get speaker embedding | |
spks = self.spk_emb(spks.long()) | |
# Get encoder_outputs `mu_x` and log-scaled token durations `logw` | |
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks) | |
w = torch.exp(logw) * x_mask | |
w_ceil = torch.ceil(w) * length_scale | |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | |
y_max_length = y_lengths.max() | |
y_max_length_ = fix_len_compatibility(y_max_length) | |
# Using obtained durations `w` construct alignment map `attn` | |
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype) | |
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) | |
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1) | |
# Align encoded text and get mu_y | |
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) | |
mu_y = mu_y.transpose(1, 2) | |
encoder_outputs = mu_y[:, :, :y_max_length] | |
# Generate sample tracing the probability flow | |
decoder_outputs = self.decoder(mu_y, y_mask, n_timesteps, temperature, spks) | |
decoder_outputs = decoder_outputs[:, :, :y_max_length] | |
t = (dt.datetime.now() - t).total_seconds() | |
rtf = t * 22050 / (decoder_outputs.shape[-1] * 256) | |
return { | |
"encoder_outputs": encoder_outputs, | |
"decoder_outputs": decoder_outputs, | |
"attn": attn[:, :, :y_max_length], | |
"mel": denormalize(decoder_outputs, self.mel_mean, self.mel_std), | |
"mel_lengths": y_lengths, | |
"rtf": rtf, | |
} | |
def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None): | |
""" | |
Computes 3 losses: | |
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS). | |
2. prior loss: loss between mel-spectrogram and encoder outputs. | |
3. flow matching loss: loss between mel-spectrogram and decoder outputs. | |
Args: | |
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids. | |
shape: (batch_size, max_text_length) | |
x_lengths (torch.Tensor): lengths of texts in batch. | |
shape: (batch_size,) | |
y (torch.Tensor): batch of corresponding mel-spectrograms. | |
shape: (batch_size, n_feats, max_mel_length) | |
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch. | |
shape: (batch_size,) | |
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained. | |
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size. | |
spks (torch.Tensor, optional): speaker ids. | |
shape: (batch_size,) | |
""" | |
if self.n_spks > 1: | |
# Get speaker embedding | |
spks = self.spk_emb(spks) | |
# Get encoder_outputs `mu_x` and log-scaled token durations `logw` | |
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks) | |
y_max_length = y.shape[-1] | |
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask) | |
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) | |
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram | |
with torch.no_grad(): | |
const = -0.5 * math.log(2 * math.pi) * self.n_feats | |
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device) | |
y_square = torch.matmul(factor.transpose(1, 2), y**2) | |
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y) | |
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1) | |
log_prior = y_square - y_mu_double + mu_square + const | |
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1)) | |
attn = attn.detach() | |
# Compute loss between predicted log-scaled durations and those obtained from MAS | |
# refered to as prior loss in the paper | |
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask | |
dur_loss = duration_loss(logw, logw_, x_lengths) | |
# Cut a small segment of mel-spectrogram in order to increase batch size | |
# - "Hack" taken from Grad-TTS, in case of Grad-TTS, we cannot train batch size 32 on a 24GB GPU without it | |
# - Do not need this hack for Matcha-TTS, but it works with it as well | |
if not isinstance(out_size, type(None)): | |
max_offset = (y_lengths - out_size).clamp(0) | |
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy())) | |
out_offset = torch.LongTensor( | |
[torch.tensor(random.choice(range(start, end)) if end > start else 0) for start, end in offset_ranges] | |
).to(y_lengths) | |
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], out_size, dtype=attn.dtype, device=attn.device) | |
y_cut = torch.zeros(y.shape[0], self.n_feats, out_size, dtype=y.dtype, device=y.device) | |
y_cut_lengths = [] | |
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)): | |
y_cut_length = out_size + (y_lengths[i] - out_size).clamp(None, 0) | |
y_cut_lengths.append(y_cut_length) | |
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length | |
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper] | |
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper] | |
y_cut_lengths = torch.LongTensor(y_cut_lengths) | |
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask) | |
attn = attn_cut | |
y = y_cut | |
y_mask = y_cut_mask | |
# Align encoded text with mel-spectrogram and get mu_y segment | |
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) | |
mu_y = mu_y.transpose(1, 2) | |
# Compute loss of the decoder | |
diff_loss, _ = self.decoder.compute_loss(x1=y, mask=y_mask, mu=mu_y, spks=spks, cond=cond) | |
if self.prior_loss: | |
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask) | |
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats) | |
else: | |
prior_loss = 0 | |
return dur_loss, prior_loss, diff_loss | |