Spaces:
Running
on
L4
Running
on
L4
import argparse | |
import random | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from lightning import LightningModule | |
from matcha.cli import VOCODER_URLS, load_matcha, load_vocoder | |
DEFAULT_OPSET = 15 | |
SEED = 1234 | |
random.seed(SEED) | |
np.random.seed(SEED) | |
torch.manual_seed(SEED) | |
torch.cuda.manual_seed(SEED) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
class MatchaWithVocoder(LightningModule): | |
def __init__(self, matcha, vocoder): | |
super().__init__() | |
self.matcha = matcha | |
self.vocoder = vocoder | |
def forward(self, x, x_lengths, scales, spks=None): | |
mel, mel_lengths = self.matcha(x, x_lengths, scales, spks) | |
wavs = self.vocoder(mel).clamp(-1, 1) | |
lengths = mel_lengths * 256 | |
return wavs.squeeze(1), lengths | |
def get_exportable_module(matcha, vocoder, n_timesteps): | |
""" | |
Return an appropriate `LighteningModule` and output-node names | |
based on whether the vocoder is embedded in the final graph | |
""" | |
def onnx_forward_func(x, x_lengths, scales, spks=None): | |
""" | |
Custom forward function for accepting | |
scaler parameters as tensors | |
""" | |
# Extract scaler parameters from tensors | |
temperature = scales[0] | |
length_scale = scales[1] | |
output = matcha.synthesise(x, x_lengths, n_timesteps, temperature, spks, length_scale) | |
return output["mel"], output["mel_lengths"] | |
# Monkey-patch Matcha's forward function | |
matcha.forward = onnx_forward_func | |
if vocoder is None: | |
model, output_names = matcha, ["mel", "mel_lengths"] | |
else: | |
model = MatchaWithVocoder(matcha, vocoder) | |
output_names = ["wav", "wav_lengths"] | |
return model, output_names | |
def get_inputs(is_multi_speaker): | |
""" | |
Create dummy inputs for tracing | |
""" | |
dummy_input_length = 50 | |
x = torch.randint(low=0, high=20, size=(1, dummy_input_length), dtype=torch.long) | |
x_lengths = torch.LongTensor([dummy_input_length]) | |
# Scales | |
temperature = 0.667 | |
length_scale = 1.0 | |
scales = torch.Tensor([temperature, length_scale]) | |
model_inputs = [x, x_lengths, scales] | |
input_names = [ | |
"x", | |
"x_lengths", | |
"scales", | |
] | |
if is_multi_speaker: | |
spks = torch.LongTensor([1]) | |
model_inputs.append(spks) | |
input_names.append("spks") | |
return tuple(model_inputs), input_names | |
def main(): | |
parser = argparse.ArgumentParser(description="Export 🍵 Matcha-TTS to ONNX") | |
parser.add_argument( | |
"checkpoint_path", | |
type=str, | |
help="Path to the model checkpoint", | |
) | |
parser.add_argument("output", type=str, help="Path to output `.onnx` file") | |
parser.add_argument( | |
"--n-timesteps", type=int, default=5, help="Number of steps to use for reverse diffusion in decoder (default 5)" | |
) | |
parser.add_argument( | |
"--vocoder-name", | |
type=str, | |
choices=list(VOCODER_URLS.keys()), | |
default=None, | |
help="Name of the vocoder to embed in the ONNX graph", | |
) | |
parser.add_argument( | |
"--vocoder-checkpoint-path", | |
type=str, | |
default=None, | |
help="Vocoder checkpoint to embed in the ONNX graph for an `e2e` like experience", | |
) | |
parser.add_argument("--opset", type=int, default=DEFAULT_OPSET, help="ONNX opset version to use (default 15") | |
args = parser.parse_args() | |
print(f"[🍵] Loading Matcha checkpoint from {args.checkpoint_path}") | |
print(f"Setting n_timesteps to {args.n_timesteps}") | |
checkpoint_path = Path(args.checkpoint_path) | |
matcha = load_matcha(checkpoint_path.stem, checkpoint_path, "cpu") | |
if args.vocoder_name or args.vocoder_checkpoint_path: | |
assert ( | |
args.vocoder_name and args.vocoder_checkpoint_path | |
), "Both vocoder_name and vocoder-checkpoint are required when embedding the vocoder in the ONNX graph." | |
vocoder, _ = load_vocoder(args.vocoder_name, args.vocoder_checkpoint_path, "cpu") | |
else: | |
vocoder = None | |
is_multi_speaker = matcha.n_spks > 1 | |
dummy_input, input_names = get_inputs(is_multi_speaker) | |
model, output_names = get_exportable_module(matcha, vocoder, args.n_timesteps) | |
# Set dynamic shape for inputs/outputs | |
dynamic_axes = { | |
"x": {0: "batch_size", 1: "time"}, | |
"x_lengths": {0: "batch_size"}, | |
} | |
if vocoder is None: | |
dynamic_axes.update( | |
{ | |
"mel": {0: "batch_size", 2: "time"}, | |
"mel_lengths": {0: "batch_size"}, | |
} | |
) | |
else: | |
print("Embedding the vocoder in the ONNX graph") | |
dynamic_axes.update( | |
{ | |
"wav": {0: "batch_size", 1: "time"}, | |
"wav_lengths": {0: "batch_size"}, | |
} | |
) | |
if is_multi_speaker: | |
dynamic_axes["spks"] = {0: "batch_size"} | |
# Create the output directory (if not exists) | |
Path(args.output).parent.mkdir(parents=True, exist_ok=True) | |
model.to_onnx( | |
args.output, | |
dummy_input, | |
input_names=input_names, | |
output_names=output_names, | |
dynamic_axes=dynamic_axes, | |
opset_version=args.opset, | |
export_params=True, | |
do_constant_folding=True, | |
) | |
print(f"[🍵] ONNX model exported to {args.output}") | |
if __name__ == "__main__": | |
main() | |