Spaces:
Running
on
L4
Running
on
L4
""" from https://github.com/jaywalnut310/glow-tts """ | |
import numpy as np | |
import torch | |
def sequence_mask(length, max_length=None): | |
if max_length is None: | |
max_length = length.max() | |
x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
return x.unsqueeze(0) < length.unsqueeze(1) | |
def fix_len_compatibility(length, num_downsamplings_in_unet=2): | |
factor = torch.scalar_tensor(2).pow(num_downsamplings_in_unet) | |
length = (length / factor).ceil() * factor | |
if not torch.onnx.is_in_onnx_export(): | |
return length.int().item() | |
else: | |
return length | |
def convert_pad_shape(pad_shape): | |
inverted_shape = pad_shape[::-1] | |
pad_shape = [item for sublist in inverted_shape for item in sublist] | |
return pad_shape | |
def generate_path(duration, mask): | |
device = duration.device | |
b, t_x, t_y = mask.shape | |
cum_duration = torch.cumsum(duration, 1) | |
path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device) | |
cum_duration_flat = cum_duration.view(b * t_x) | |
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) | |
path = path.view(b, t_x, t_y) | |
path = path - torch.nn.functional.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] | |
path = path * mask | |
return path | |
def duration_loss(logw, logw_, lengths): | |
loss = torch.sum((logw - logw_) ** 2) / torch.sum(lengths) | |
return loss | |
def normalize(data, mu, std): | |
if not isinstance(mu, (float, int)): | |
if isinstance(mu, list): | |
mu = torch.tensor(mu, dtype=data.dtype, device=data.device) | |
elif isinstance(mu, torch.Tensor): | |
mu = mu.to(data.device) | |
elif isinstance(mu, np.ndarray): | |
mu = torch.from_numpy(mu).to(data.device) | |
mu = mu.unsqueeze(-1) | |
if not isinstance(std, (float, int)): | |
if isinstance(std, list): | |
std = torch.tensor(std, dtype=data.dtype, device=data.device) | |
elif isinstance(std, torch.Tensor): | |
std = std.to(data.device) | |
elif isinstance(std, np.ndarray): | |
std = torch.from_numpy(std).to(data.device) | |
std = std.unsqueeze(-1) | |
return (data - mu) / std | |
def denormalize(data, mu, std): | |
if not isinstance(mu, float): | |
if isinstance(mu, list): | |
mu = torch.tensor(mu, dtype=data.dtype, device=data.device) | |
elif isinstance(mu, torch.Tensor): | |
mu = mu.to(data.device) | |
elif isinstance(mu, np.ndarray): | |
mu = torch.from_numpy(mu).to(data.device) | |
mu = mu.unsqueeze(-1) | |
if not isinstance(std, float): | |
if isinstance(std, list): | |
std = torch.tensor(std, dtype=data.dtype, device=data.device) | |
elif isinstance(std, torch.Tensor): | |
std = std.to(data.device) | |
elif isinstance(std, np.ndarray): | |
std = torch.from_numpy(std).to(data.device) | |
std = std.unsqueeze(-1) | |
return data * std + mu | |