R1ckShi's picture
init push
5b4c852 verified
raw
history blame
5.39 kB
import argparse
import random
from pathlib import Path
import numpy as np
import torch
from lightning import LightningModule
from matcha.cli import VOCODER_URLS, load_matcha, load_vocoder
DEFAULT_OPSET = 15
SEED = 1234
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class MatchaWithVocoder(LightningModule):
def __init__(self, matcha, vocoder):
super().__init__()
self.matcha = matcha
self.vocoder = vocoder
def forward(self, x, x_lengths, scales, spks=None):
mel, mel_lengths = self.matcha(x, x_lengths, scales, spks)
wavs = self.vocoder(mel).clamp(-1, 1)
lengths = mel_lengths * 256
return wavs.squeeze(1), lengths
def get_exportable_module(matcha, vocoder, n_timesteps):
"""
Return an appropriate `LighteningModule` and output-node names
based on whether the vocoder is embedded in the final graph
"""
def onnx_forward_func(x, x_lengths, scales, spks=None):
"""
Custom forward function for accepting
scaler parameters as tensors
"""
# Extract scaler parameters from tensors
temperature = scales[0]
length_scale = scales[1]
output = matcha.synthesise(x, x_lengths, n_timesteps, temperature, spks, length_scale)
return output["mel"], output["mel_lengths"]
# Monkey-patch Matcha's forward function
matcha.forward = onnx_forward_func
if vocoder is None:
model, output_names = matcha, ["mel", "mel_lengths"]
else:
model = MatchaWithVocoder(matcha, vocoder)
output_names = ["wav", "wav_lengths"]
return model, output_names
def get_inputs(is_multi_speaker):
"""
Create dummy inputs for tracing
"""
dummy_input_length = 50
x = torch.randint(low=0, high=20, size=(1, dummy_input_length), dtype=torch.long)
x_lengths = torch.LongTensor([dummy_input_length])
# Scales
temperature = 0.667
length_scale = 1.0
scales = torch.Tensor([temperature, length_scale])
model_inputs = [x, x_lengths, scales]
input_names = [
"x",
"x_lengths",
"scales",
]
if is_multi_speaker:
spks = torch.LongTensor([1])
model_inputs.append(spks)
input_names.append("spks")
return tuple(model_inputs), input_names
def main():
parser = argparse.ArgumentParser(description="Export 🍵 Matcha-TTS to ONNX")
parser.add_argument(
"checkpoint_path",
type=str,
help="Path to the model checkpoint",
)
parser.add_argument("output", type=str, help="Path to output `.onnx` file")
parser.add_argument(
"--n-timesteps", type=int, default=5, help="Number of steps to use for reverse diffusion in decoder (default 5)"
)
parser.add_argument(
"--vocoder-name",
type=str,
choices=list(VOCODER_URLS.keys()),
default=None,
help="Name of the vocoder to embed in the ONNX graph",
)
parser.add_argument(
"--vocoder-checkpoint-path",
type=str,
default=None,
help="Vocoder checkpoint to embed in the ONNX graph for an `e2e` like experience",
)
parser.add_argument("--opset", type=int, default=DEFAULT_OPSET, help="ONNX opset version to use (default 15")
args = parser.parse_args()
print(f"[🍵] Loading Matcha checkpoint from {args.checkpoint_path}")
print(f"Setting n_timesteps to {args.n_timesteps}")
checkpoint_path = Path(args.checkpoint_path)
matcha = load_matcha(checkpoint_path.stem, checkpoint_path, "cpu")
if args.vocoder_name or args.vocoder_checkpoint_path:
assert (
args.vocoder_name and args.vocoder_checkpoint_path
), "Both vocoder_name and vocoder-checkpoint are required when embedding the vocoder in the ONNX graph."
vocoder, _ = load_vocoder(args.vocoder_name, args.vocoder_checkpoint_path, "cpu")
else:
vocoder = None
is_multi_speaker = matcha.n_spks > 1
dummy_input, input_names = get_inputs(is_multi_speaker)
model, output_names = get_exportable_module(matcha, vocoder, args.n_timesteps)
# Set dynamic shape for inputs/outputs
dynamic_axes = {
"x": {0: "batch_size", 1: "time"},
"x_lengths": {0: "batch_size"},
}
if vocoder is None:
dynamic_axes.update(
{
"mel": {0: "batch_size", 2: "time"},
"mel_lengths": {0: "batch_size"},
}
)
else:
print("Embedding the vocoder in the ONNX graph")
dynamic_axes.update(
{
"wav": {0: "batch_size", 1: "time"},
"wav_lengths": {0: "batch_size"},
}
)
if is_multi_speaker:
dynamic_axes["spks"] = {0: "batch_size"}
# Create the output directory (if not exists)
Path(args.output).parent.mkdir(parents=True, exist_ok=True)
model.to_onnx(
args.output,
dummy_input,
input_names=input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
opset_version=args.opset,
export_params=True,
do_constant_folding=True,
)
print(f"[🍵] ONNX model exported to {args.output}")
if __name__ == "__main__":
main()