Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2020 Mobvoi Inc (Di Wu) | |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import argparse | |
import glob | |
import yaml | |
import torch | |
def get_args(): | |
parser = argparse.ArgumentParser(description='average model') | |
parser.add_argument('--dst_model', required=True, help='averaged model') | |
parser.add_argument('--src_path', | |
required=True, | |
help='src model path for average') | |
parser.add_argument('--val_best', | |
action="store_true", | |
help='averaged model') | |
parser.add_argument('--num', | |
default=5, | |
type=int, | |
help='nums for averaged model') | |
args = parser.parse_args() | |
print(args) | |
return args | |
def main(): | |
args = get_args() | |
val_scores = [] | |
if args.val_best: | |
yamls = glob.glob('{}/*.yaml'.format(args.src_path)) | |
yamls = [ | |
f for f in yamls | |
if not (os.path.basename(f).startswith('train') | |
or os.path.basename(f).startswith('init')) | |
] | |
for y in yamls: | |
with open(y, 'r') as f: | |
dic_yaml = yaml.load(f, Loader=yaml.BaseLoader) | |
loss = float(dic_yaml['loss_dict']['loss']) | |
epoch = int(dic_yaml['epoch']) | |
step = int(dic_yaml['step']) | |
tag = dic_yaml['tag'] | |
val_scores += [[epoch, step, loss, tag]] | |
sorted_val_scores = sorted(val_scores, | |
key=lambda x: x[2], | |
reverse=False) | |
print("best val (epoch, step, loss, tag) = " + | |
str(sorted_val_scores[:args.num])) | |
path_list = [ | |
args.src_path + '/epoch_{}_whole.pt'.format(score[0]) | |
for score in sorted_val_scores[:args.num] | |
] | |
print(path_list) | |
avg = {} | |
num = args.num | |
assert num == len(path_list) | |
for path in path_list: | |
print('Processing {}'.format(path)) | |
states = torch.load(path, map_location=torch.device('cpu')) | |
for k in states.keys(): | |
if k not in avg.keys(): | |
avg[k] = states[k].clone() | |
else: | |
avg[k] += states[k] | |
# average | |
for k in avg.keys(): | |
if avg[k] is not None: | |
# pytorch 1.6 use true_divide instead of /= | |
avg[k] = torch.true_divide(avg[k], num) | |
print('Saving to {}'.format(args.dst_model)) | |
torch.save(avg, args.dst_model) | |
if __name__ == '__main__': | |
main() | |