R1ckShi's picture
init push
5b4c852 verified
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import numpy as np
import threading
import time
from torch.nn import functional as F
from contextlib import nullcontext
import uuid
from cosyvoice.utils.common import fade_in_out
class CosyVoiceModel:
def __init__(self,
llm: torch.nn.Module,
flow: torch.nn.Module,
hift: torch.nn.Module,
fp16: bool):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.llm = llm
self.flow = flow
self.hift = hift
self.fp16 = fp16
self.token_min_hop_len = 2 * self.flow.input_frame_rate
self.token_max_hop_len = 4 * self.flow.input_frame_rate
self.token_overlap_len = 20
# mel fade in out
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
self.mel_window = np.hamming(2 * self.mel_overlap_len)
# hift cache
self.mel_cache_len = 20
self.source_cache_len = int(self.mel_cache_len * 256)
# speech fade in out
self.speech_window = np.hamming(2 * self.source_cache_len)
# rtf and decoding related
self.stream_scale_factor = 1
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
self.lock = threading.Lock()
# dict used to store session related variable
self.tts_speech_token_dict = {}
self.llm_end_dict = {}
self.mel_overlap_dict = {}
self.flow_cache_dict = {}
self.hift_cache_dict = {}
def load(self, llm_model, flow_model, hift_model):
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
self.llm.to(self.device).eval()
if self.fp16 is True:
self.llm.half()
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
self.flow.to(self.device).eval()
# in case hift_model is a hifigan model
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
self.hift.load_state_dict(hift_state_dict, strict=True)
self.hift.to(self.device).eval()
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
assert self.fp16 is True, "we only provide fp16 jit model, set fp16=True if you want to use jit model"
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
self.llm.text_encoder = llm_text_encoder
llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
self.llm.llm = llm_llm
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
self.flow.encoder = flow_encoder
def load_onnx(self, flow_decoder_estimator_model):
import onnxruntime
option = onnxruntime.SessionOptions()
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
option.intra_op_num_threads = 1
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
del self.flow.decoder.estimator
self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
if self.fp16 is True:
llm_embedding = llm_embedding.half()
with self.llm_context:
for i in self.llm.inference(text=text.to(self.device),
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
prompt_text=prompt_text.to(self.device),
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
prompt_speech_token=llm_prompt_speech_token.to(self.device),
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
embedding=llm_embedding.to(self.device)):
self.tts_speech_token_dict[uuid].append(i)
self.llm_end_dict[uuid] = True
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
prompt_token=prompt_token.to(self.device),
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
prompt_feat=prompt_feat.to(self.device),
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
embedding=embedding.to(self.device),
flow_cache=self.flow_cache_dict[uuid])
self.flow_cache_dict[uuid] = flow_cache
# mel overlap fade in out
if self.mel_overlap_dict[uuid].shape[2] != 0:
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
# append hift cache
if self.hift_cache_dict[uuid] is not None:
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
else:
hift_cache_source = torch.zeros(1, 1, 0)
# keep overlap mel and hift cache
if finalize is False:
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
if self.hift_cache_dict[uuid] is not None:
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
'source': tts_source[:, :, -self.source_cache_len:],
'speech': tts_speech[:, -self.source_cache_len:]}
tts_speech = tts_speech[:, :-self.source_cache_len]
else:
if speed != 1.0:
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
if self.hift_cache_dict[uuid] is not None:
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
return tts_speech
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
# this_uuid is used to track variables related to this inference thread
this_uuid = str(uuid.uuid1())
with self.lock:
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
self.hift_cache_dict[this_uuid] = None
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
p.start()
if stream is True:
token_hop_len = self.token_min_hop_len
while True:
time.sleep(0.1)
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
.unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
finalize=False)
yield {'tts_speech': this_tts_speech.cpu()}
with self.lock:
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
# increase token_hop_len for better speech quality
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
break
p.join()
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
finalize=True)
yield {'tts_speech': this_tts_speech.cpu()}
else:
# deal with all tokens
p.join()
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
finalize=True,
speed=speed)
yield {'tts_speech': this_tts_speech.cpu()}
with self.lock:
self.tts_speech_token_dict.pop(this_uuid)
self.llm_end_dict.pop(this_uuid)
self.mel_overlap_dict.pop(this_uuid)
self.hift_cache_dict.pop(this_uuid)
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
# this_uuid is used to track variables related to this inference thread
this_uuid = str(uuid.uuid1())
with self.lock:
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
self.hift_cache_dict[this_uuid] = None
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
if stream is True:
token_hop_len = self.token_min_hop_len
while True:
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
.unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
finalize=False)
yield {'tts_speech': this_tts_speech.cpu()}
with self.lock:
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
# increase token_hop_len for better speech quality
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
break
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid], dim=1).unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
finalize=True)
yield {'tts_speech': this_tts_speech.cpu()}
else:
# deal with all tokens
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
finalize=True,
speed=speed)
yield {'tts_speech': this_tts_speech.cpu()}
with self.lock:
self.tts_speech_token_dict.pop(this_uuid)
self.llm_end_dict.pop(this_uuid)
self.mel_overlap_dict.pop(this_uuid)
self.hift_cache_dict.pop(this_uuid)
class CosyVoice2Model:
def __init__(self,
llm: torch.nn.Module,
flow: torch.nn.Module,
hift: torch.nn.Module):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.llm = llm
self.flow = flow
self.hift = hift
self.token_hop_len = 2 * self.flow.input_frame_rate
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
# hift cache
self.mel_cache_len = 8
self.source_cache_len = int(self.mel_cache_len * 480)
# speech fade in out
self.speech_window = np.hamming(2 * self.source_cache_len)
# rtf and decoding related
self.stream_scale_factor = 1
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
self.lock = threading.Lock()
# dict used to store session related variable
self.tts_speech_token_dict = {}
self.llm_end_dict = {}
self.hift_cache_dict = {}
def load(self, llm_model, flow_model, hift_model):
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
self.llm.to(self.device).eval()
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
self.flow.to(self.device).eval()
self.flow.decoder.fp16 = False
# in case hift_model is a hifigan model
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
self.hift.load_state_dict(hift_state_dict, strict=True)
self.hift.to(self.device).eval()
def load_jit(self, flow_encoder_model):
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
self.flow.encoder = flow_encoder
def load_onnx(self, flow_decoder_estimator_model):
import onnxruntime
option = onnxruntime.SessionOptions()
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
option.intra_op_num_threads = 1
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
del self.flow.decoder.estimator
self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
def load_trt(self, flow_decoder_estimator_model):
del self.flow.decoder.estimator
import tensorrt as trt
with open(flow_decoder_estimator_model, 'rb') as f:
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
self.flow.decoder.fp16 = True
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
with self.llm_context:
for i in self.llm.inference(text=text.to(self.device),
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
prompt_text=prompt_text.to(self.device),
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
prompt_speech_token=llm_prompt_speech_token.to(self.device),
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
embedding=llm_embedding.to(self.device)):
self.tts_speech_token_dict[uuid].append(i)
self.llm_end_dict[uuid] = True
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
tts_mel, _ = self.flow.inference(token=token.to(self.device),
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
prompt_token=prompt_token.to(self.device),
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
prompt_feat=prompt_feat.to(self.device),
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
embedding=embedding.to(self.device),
finalize=finalize)
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
# append hift cache
if self.hift_cache_dict[uuid] is not None:
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
else:
hift_cache_source = torch.zeros(1, 1, 0)
# keep overlap mel and hift cache
if finalize is False:
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
if self.hift_cache_dict[uuid] is not None:
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
'source': tts_source[:, :, -self.source_cache_len:],
'speech': tts_speech[:, -self.source_cache_len:]}
tts_speech = tts_speech[:, :-self.source_cache_len]
else:
if speed != 1.0:
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
if self.hift_cache_dict[uuid] is not None:
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
return tts_speech
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
# this_uuid is used to track variables related to this inference thread
this_uuid = str(uuid.uuid1())
with self.lock:
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
self.hift_cache_dict[this_uuid] = None
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
p.start()
if stream is True:
token_offset = 0
while True:
time.sleep(0.1)
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]) \
.unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
token_offset=token_offset,
finalize=False)
token_offset += self.token_hop_len
yield {'tts_speech': this_tts_speech.cpu()}
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
break
p.join()
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
token_offset=token_offset,
finalize=True)
yield {'tts_speech': this_tts_speech.cpu()}
else:
# deal with all tokens
p.join()
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
token_offset=0,
finalize=True,
speed=speed)
yield {'tts_speech': this_tts_speech.cpu()}
with self.lock:
self.tts_speech_token_dict.pop(this_uuid)
self.llm_end_dict.pop(this_uuid)