Spaces:
Running
on
L4
Running
on
L4
from typing import Any, Dict, Optional | |
import torch | |
import torch.nn as nn | |
from diffusers.models.attention import ( | |
GEGLU, | |
GELU, | |
AdaLayerNorm, | |
AdaLayerNormZero, | |
ApproximateGELU, | |
) | |
from diffusers.models.attention_processor import Attention | |
from diffusers.models.lora import LoRACompatibleLinear | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
class SnakeBeta(nn.Module): | |
""" | |
A modified Snake function which uses separate parameters for the magnitude of the periodic components | |
Shape: | |
- Input: (B, C, T) | |
- Output: (B, C, T), same shape as the input | |
Parameters: | |
- alpha - trainable parameter that controls frequency | |
- beta - trainable parameter that controls magnitude | |
References: | |
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: | |
https://arxiv.org/abs/2006.08195 | |
Examples: | |
>>> a1 = snakebeta(256) | |
>>> x = torch.randn(256) | |
>>> x = a1(x) | |
""" | |
def __init__(self, in_features, out_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True): | |
""" | |
Initialization. | |
INPUT: | |
- in_features: shape of the input | |
- alpha - trainable parameter that controls frequency | |
- beta - trainable parameter that controls magnitude | |
alpha is initialized to 1 by default, higher values = higher-frequency. | |
beta is initialized to 1 by default, higher values = higher-magnitude. | |
alpha will be trained along with the rest of your model. | |
""" | |
super().__init__() | |
self.in_features = out_features if isinstance(out_features, list) else [out_features] | |
self.proj = LoRACompatibleLinear(in_features, out_features) | |
# initialize alpha | |
self.alpha_logscale = alpha_logscale | |
if self.alpha_logscale: # log scale alphas initialized to zeros | |
self.alpha = nn.Parameter(torch.zeros(self.in_features) * alpha) | |
self.beta = nn.Parameter(torch.zeros(self.in_features) * alpha) | |
else: # linear scale alphas initialized to ones | |
self.alpha = nn.Parameter(torch.ones(self.in_features) * alpha) | |
self.beta = nn.Parameter(torch.ones(self.in_features) * alpha) | |
self.alpha.requires_grad = alpha_trainable | |
self.beta.requires_grad = alpha_trainable | |
self.no_div_by_zero = 0.000000001 | |
def forward(self, x): | |
""" | |
Forward pass of the function. | |
Applies the function to the input elementwise. | |
SnakeBeta ∶= x + 1/b * sin^2 (xa) | |
""" | |
x = self.proj(x) | |
if self.alpha_logscale: | |
alpha = torch.exp(self.alpha) | |
beta = torch.exp(self.beta) | |
else: | |
alpha = self.alpha | |
beta = self.beta | |
x = x + (1.0 / (beta + self.no_div_by_zero)) * torch.pow(torch.sin(x * alpha), 2) | |
return x | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim) | |
if activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh") | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim) | |
elif activation_fn == "snakebeta": | |
act_fn = SnakeBeta(dim, inner_dim) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(LoRACompatibleLinear(inner_dim, dim_out)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states): | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |
class BasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", | |
final_dropout: bool = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
# scale_qk=False, # uncomment this to not to use flash attention | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
): | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 1. Self-Attention | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
else: | |
norm_hidden_states = self.norm1(hidden_states) | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = attn_output + hidden_states | |
# 2. Cross-Attention | |
if self.attn2 is not None: | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 3. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
ff_output = torch.cat( | |
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)], | |
dim=self._chunk_dim, | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = ff_output + hidden_states | |
return hidden_states | |