Future-Tense commited on
Commit
2a1d794
·
1 Parent(s): b18bae5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -7,14 +7,17 @@ from ultralyticsplus import YOLO, render_result
7
 
8
  #from torch import hub # Hub contains other models like FasterRCNN
9
  model = YOLO('ultralyticsplus/yolov8s')
 
 
10
 
11
  # set model parameters
12
  model.overrides['conf'] = 0.25 # NMS confidence threshold
13
  model.overrides['iou'] = 0.45 # NMS IoU threshold
14
  model.overrides['agnostic_nms'] = False # NMS class-agnostic
15
  model.overrides['max_det'] = 1000 # maximum number of detections per image
 
 
16
 
17
- URL = "https://www.youtube.com/watch?v=dQw4w9WgXcQ" #URL to parse
18
  #play = pafy.new(_URL).streams[-1] #'-1' means read the lowest quality of video.
19
 
20
  #assert play is not None # we want to make sure their is a input to read.
@@ -42,9 +45,7 @@ URL = "https://www.youtube.com/watch?v=dQw4w9WgXcQ" #URL to parse
42
  """
43
  The function below identifies the device which is availabe to make the prediction and uses it to load and infer the frame. Once it has results it will extract the labels and cordinates(Along with scores) for each object detected in the frame.
44
  """
45
- def score_frame(frame, model):
46
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
47
- model.to(device)
48
  frame = [torch.tensor(frame)]
49
  results = model(frame)
50
  labels = results.xyxyn[0][:, -1].numpy()
 
7
 
8
  #from torch import hub # Hub contains other models like FasterRCNN
9
  model = YOLO('ultralyticsplus/yolov8s')
10
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
11
+ URL = "https://www.youtube.com/watch?v=dQw4w9WgXcQ" #URL to parse
12
 
13
  # set model parameters
14
  model.overrides['conf'] = 0.25 # NMS confidence threshold
15
  model.overrides['iou'] = 0.45 # NMS IoU threshold
16
  model.overrides['agnostic_nms'] = False # NMS class-agnostic
17
  model.overrides['max_det'] = 1000 # maximum number of detections per image
18
+ model.to(device)
19
+
20
 
 
21
  #play = pafy.new(_URL).streams[-1] #'-1' means read the lowest quality of video.
22
 
23
  #assert play is not None # we want to make sure their is a input to read.
 
45
  """
46
  The function below identifies the device which is availabe to make the prediction and uses it to load and infer the frame. Once it has results it will extract the labels and cordinates(Along with scores) for each object detected in the frame.
47
  """
48
+ def score_frame(frame):
 
 
49
  frame = [torch.tensor(frame)]
50
  results = model(frame)
51
  labels = results.xyxyn[0][:, -1].numpy()