File size: 1,746 Bytes
c2f314c
0d29e9f
680c3bf
 
0d29e9f
c2f314c
0d29e9f
 
 
 
 
bb347bc
c4c4b83
54771e9
a9057b2
54771e9
 
 
 
 
0d29e9f
 
54771e9
dac85aa
0d29e9f
 
dac85aa
b314fb6
0d29e9f
dac85aa
5be066f
54771e9
 
0d29e9f
 
dac85aa
 
 
 
 
 
 
 
0d29e9f
 
dac85aa
0d29e9f
3f7bb18
 
 
 
 
 
c4c4b83
0d29e9f
 
dac85aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
import jax
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline

pipeline, pipeline_params = FlaxStableDiffusionPipeline.from_pretrained(
    "bguisard/stable-diffusion-nano",
)


def generate_image(prompt: str, inference_steps: int = 30, prng_seed: int = 0):
    rng = jax.random.PRNGKey(int(prng_seed))
    rng = jax.random.split(rng, jax.device_count())
    p_params = replicate(pipeline_params)
    
    num_samples = 1
    prompt_ids = pipeline.prepare_inputs([prompt] * num_samples)
    prompt_ids = shard(prompt_ids)
    
    images = pipeline(
        prompt_ids=prompt_ids,
        params=p_params,
        prng_seed=rng,
        height=128,
        width=128,
        num_inference_steps=int(inference_steps),
        jit=True,
    ).images

    images = images.reshape((num_samples,) + images.shape[-3:])
    images = pipeline.numpy_to_pil(images)
    return images


prompt_input = gr.inputs.Textbox(
    label="Prompt", placeholder="A watercolor painting of a bird"
)
inf_steps_input = gr.inputs.Slider(
    minimum=1, maximum=100, default=30, step=1, label="Inference Steps"
)
seed_input = gr.inputs.Number(default=0, label="Seed")

app = gr.Interface(
    fn=generate_image,
    inputs=[prompt_input, inf_steps_input, seed_input],
    outputs=gr.Image(shape=(128, 128)),
    title="Stable Diffusion Nano",
    description=(
        "Based on stable diffusion and fine-tuned on 128x128 images, "
        "Stable Diffusion Nano allows for fast prototyping of diffusion models, "
        "enabling quick experimentation with easily available hardware."
    ),
    examples=[["A watercolor painting of a bird", 30, 0]],
)

app.launch()