G-AshwinKumar's picture
Cleanup
90816e9
raw
history blame
1.84 kB
import gradio as gr
import jax
import jax.numpy as jnp
from diffusers import FlaxStableDiffusionPipeline
from flax.jax_utils import replicate
from flax.training.common_utils import shard
pipeline, pipeline_params = FlaxStableDiffusionPipeline.from_pretrained(
"bguisard/stable-diffusion-nano",
dtype=jnp.float16,
resume_download=True,
use_memory_efficient_attention=True
)
def generate_image(prompt: str, inference_steps: int = 30, prng_seed: int = 0):
rng = jax.random.PRNGKey(int(prng_seed))
rng = jax.random.split(rng, jax.device_count())
p_params = replicate(pipeline_params)
num_samples = 1
prompt_ids = pipeline.prepare_inputs([prompt] * num_samples)
prompt_ids = shard(prompt_ids)
images = pipeline(
prompt_ids=prompt_ids,
params=p_params,
prng_seed=rng,
height=128,
width=128,
num_inference_steps=int(inference_steps),
jit=True,
).images
images = images.reshape((num_samples,) + images.shape[-3:])
images = pipeline.numpy_to_pil(images)
return images[0]
prompt_input = gr.inputs.Textbox(
label="Prompt", placeholder="A watercolor painting of a bird"
)
inf_steps_input = gr.inputs.Slider(
minimum=1, maximum=100, default=30, step=1, label="Inference Steps"
)
seed_input = gr.inputs.Number(default=0, label="Seed")
app = gr.Interface(
fn=generate_image,
inputs=[prompt_input, inf_steps_input, seed_input],
outputs="image",
title="Stable Diffusion Nano",
description=(
"Based on stable diffusion and fine-tuned on 128x128 images, "
"Stable Diffusion Nano allows for fast prototyping of diffusion models, "
"enabling quick experimentation with easily available hardware."
),
examples=[["A watercolor painting of a bird", 30, 0]],
)
app.launch()