Spaces:
Sleeping
Sleeping
GVAmaresh
commited on
Commit
·
3743694
1
Parent(s):
7ef4b83
dev check working
Browse files
app.py
CHANGED
@@ -202,4 +202,66 @@ class UnifiedDeepfakeDetector:
|
|
202 |
|
203 |
except Exception as e:
|
204 |
print(f"Analysis error: {e}")
|
205 |
-
return None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
except Exception as e:
|
204 |
print(f"Analysis error: {e}")
|
205 |
+
return None, None, None
|
206 |
+
|
207 |
+
#--------------------------------------------------------------------------------------------------------------------
|
208 |
+
|
209 |
+
import torchaudio
|
210 |
+
import torch
|
211 |
+
import numpy as np
|
212 |
+
from scipy.stats import skew, kurtosis, median_abs_deviation
|
213 |
+
import os
|
214 |
+
import torch.nn.functional as F
|
215 |
+
|
216 |
+
|
217 |
+
import os
|
218 |
+
os.environ["TORCH_HOME"] = "/tmp/torch_cache"
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
from torchaudio.pipelines import WAV2VEC2_BASE
|
223 |
+
bundle = WAV2VEC2_BASE
|
224 |
+
|
225 |
+
model = bundle.get_model()
|
226 |
+
print("Model downloaded successfully!")
|
227 |
+
|
228 |
+
|
229 |
+
def extract_features(file_path):
|
230 |
+
if os.path.exists(file_path):
|
231 |
+
print(f"File successfully written: {file_path}")
|
232 |
+
else:
|
233 |
+
print("File writing failed.")
|
234 |
+
waveform, sample_rate = torchaudio.load(file_path)
|
235 |
+
if sample_rate != bundle.sample_rate:
|
236 |
+
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=bundle.sample_rate)(waveform)
|
237 |
+
|
238 |
+
with torch.inference_mode():
|
239 |
+
features, _ = model.extract_features(waveform)
|
240 |
+
|
241 |
+
pooled_features = []
|
242 |
+
for f in features:
|
243 |
+
if f.dim() == 3:
|
244 |
+
f = f.permute(0, 2, 1)
|
245 |
+
pooled_f = F.adaptive_avg_pool1d(f[0].unsqueeze(0), 1).squeeze(0)
|
246 |
+
pooled_features.append(pooled_f)
|
247 |
+
|
248 |
+
final_features = torch.cat(pooled_features, dim=0).numpy()
|
249 |
+
final_features = (final_features - np.mean(final_features)) / (np.std(final_features) + 1e-10)
|
250 |
+
|
251 |
+
return final_features
|
252 |
+
|
253 |
+
def additional_features(features):
|
254 |
+
mad = median_abs_deviation(features)
|
255 |
+
features_clipped = np.clip(features, 1e-10, None)
|
256 |
+
entropy = -np.sum(features_clipped * np.log(features_clipped))
|
257 |
+
return mad, entropy
|
258 |
+
|
259 |
+
def classify_audio(features):
|
260 |
+
|
261 |
+
_, entropy = additional_features(features)
|
262 |
+
print(entropy)
|
263 |
+
|
264 |
+
if entropy > 150:
|
265 |
+
return True, entropy
|
266 |
+
else:
|
267 |
+
return False, entropy
|