Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,240 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
import tempfile
|
4 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def transcribe_and_predict_video(video):
|
12 |
-
# Process video frames for image-based emotion recognition
|
13 |
image_emotion = process_video(video)
|
14 |
-
|
15 |
-
# Process audio for text and audio-based emotion recognition
|
16 |
text_emotion, audio_emotion = process_audio_from_video(video)
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# Emotion-aware Question Answering with LLM
|
24 |
-
def emotion_aware_qa(question, video):
|
25 |
-
# Get the emotion from the video (this uses the emotion detection you already implemented)
|
26 |
-
detected_emotion = transcribe_and_predict_video(video)
|
27 |
-
|
28 |
-
# Create a custom response context based on the detected emotion
|
29 |
-
if detected_emotion == 'joy':
|
30 |
-
emotion_context = "You're in a good mood! Let's keep the positivity going."
|
31 |
-
elif detected_emotion == 'sadness':
|
32 |
-
emotion_context = "It seems like you're feeling a bit down. Let me help with that."
|
33 |
-
elif detected_emotion == 'anger':
|
34 |
-
emotion_context = "I sense some frustration. Let's work through it together."
|
35 |
-
elif detected_emotion == 'fear':
|
36 |
-
emotion_context = "It sounds like you're anxious. How can I assist in calming things down?"
|
37 |
-
elif detected_emotion == 'neutral':
|
38 |
-
emotion_context = "You're feeling neutral. How can I help you today?"
|
39 |
-
else:
|
40 |
-
emotion_context = "You're in an uncertain emotional state. Let me guide you."
|
41 |
-
|
42 |
-
# Prepare the prompt for LLaMA, including emotion context and user question
|
43 |
-
prompt = f"{emotion_context} User asks: {question}"
|
44 |
-
|
45 |
-
# Tokenize and generate response from LLaMA
|
46 |
-
inputs = llama_tokenizer(prompt, return_tensors="pt")
|
47 |
-
outputs = llama_model.generate(inputs['input_ids'], max_length=150)
|
48 |
-
answer = llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
49 |
-
|
50 |
-
return answer
|
51 |
-
|
52 |
-
# Create Gradio interface to interact with the LLM and video emotion detection
|
53 |
-
def gradio_interface(question, video):
|
54 |
-
response = emotion_aware_qa(question, video)
|
55 |
-
return response
|
56 |
-
|
57 |
-
iface = gr.Interface(fn=gradio_interface,
|
58 |
-
inputs=["text", gr.Video()],
|
59 |
outputs="text",
|
60 |
-
title="Emotion
|
61 |
-
description="
|
62 |
|
63 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import librosa
|
5 |
+
import speech_recognition as sr
|
6 |
+
import tempfile
|
7 |
+
import wave
|
8 |
+
import os
|
9 |
+
import tensorflow as tf
|
10 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
11 |
+
from tensorflow.keras.models import load_model, model_from_json
|
12 |
+
from sklearn.preprocessing import StandardScaler
|
13 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
14 |
+
import nltk
|
15 |
+
from nltk.corpus import stopwords
|
16 |
+
from nltk.stem import WordNetLemmatizer
|
17 |
+
import pickle
|
18 |
+
import json
|
19 |
+
from tensorflow.keras.preprocessing.image import img_to_array, load_img
|
20 |
+
from collections import Counter
|
21 |
+
from pydub import AudioSegment
|
22 |
+
import ffmpeg
|
23 |
+
|
24 |
+
nltk.download('punkt') # Tokenizer
|
25 |
+
nltk.download('wordnet') # WordNet lemmatizer
|
26 |
+
nltk.download('stopwords') # Stopwords
|
27 |
+
|
28 |
+
# Load the text model
|
29 |
+
with open('model_architecture_for_text_emotion_updated_json.json', 'r') as json_file:
|
30 |
+
model_json = json_file.read()
|
31 |
+
text_model = model_from_json(model_json)
|
32 |
+
text_model.load_weights("model_for_text_emotion_updated(1).keras")
|
33 |
+
|
34 |
+
# Load the encoder and scaler for audio
|
35 |
+
with open('encoder.pkl', 'rb') as file:
|
36 |
+
encoder = pickle.load(file)
|
37 |
+
with open('scaler.pkl', 'rb') as file:
|
38 |
+
scaler = pickle.load(file)
|
39 |
+
|
40 |
+
# Load the tokenizer for text
|
41 |
+
with open('tokenizer.json') as json_file:
|
42 |
+
tokenizer_json = json.load(json_file)
|
43 |
+
tokenizer = tokenizer_from_json(tokenizer_json)
|
44 |
+
|
45 |
+
# Load the audio model
|
46 |
+
audio_model = load_model('my_model.h5')
|
47 |
+
|
48 |
+
# Load the image model
|
49 |
+
image_model = load_model('model_emotion.h5')
|
50 |
+
|
51 |
+
# Initialize NLTK
|
52 |
+
lemmatizer = WordNetLemmatizer()
|
53 |
+
stop_words = set(stopwords.words('english'))
|
54 |
+
|
55 |
+
# Preprocess text function
|
56 |
+
def preprocess_text(text):
|
57 |
+
tokens = nltk.word_tokenize(text.lower())
|
58 |
+
tokens = [word for word in tokens if word.isalnum() and word not in stop_words]
|
59 |
+
lemmatized_tokens = [lemmatizer.lemmatize(word) for word in tokens]
|
60 |
+
return ' '.join(lemmatized_tokens)
|
61 |
+
|
62 |
+
# Extract features from audio
|
63 |
+
def extract_features(data, sample_rate):
|
64 |
+
result = np.array([])
|
65 |
+
zcr = np.mean(librosa.feature.zero_crossing_rate(y=data).T, axis=0)
|
66 |
+
result = np.hstack((result, zcr))
|
67 |
+
|
68 |
+
stft = np.abs(librosa.stft(data))
|
69 |
+
chroma_stft = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T, axis=0)
|
70 |
+
result = np.hstack((result, chroma_stft))
|
71 |
+
|
72 |
+
mfcc = np.mean(librosa.feature.mfcc(y=data, sr=sample_rate).T, axis=0)
|
73 |
+
result = np.hstack((result, mfcc))
|
74 |
+
|
75 |
+
rms = np.mean(librosa.feature.rms(y=data).T, axis=0)
|
76 |
+
result = np.hstack((result, rms))
|
77 |
+
|
78 |
+
mel = np.mean(librosa.feature.melspectrogram(y=data, sr=sample_rate).T, axis=0)
|
79 |
+
result = np.hstack((result, mel))
|
80 |
+
|
81 |
+
return result
|
82 |
+
|
83 |
+
# Predict emotion from text
|
84 |
+
def find_emotion_using_text(sample_rate, audio_data, recognizer):
|
85 |
+
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
|
86 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
|
87 |
+
temp_audio_path = temp_audio_file.name
|
88 |
+
|
89 |
+
with wave.open(temp_audio_path, 'w') as wf:
|
90 |
+
wf.setnchannels(1)
|
91 |
+
wf.setsampwidth(2)
|
92 |
+
wf.setframerate(sample_rate)
|
93 |
+
wf.writeframes(audio_data.tobytes())
|
94 |
+
|
95 |
+
with sr.AudioFile(temp_audio_path) as source:
|
96 |
+
audio_record = recognizer.record(source)
|
97 |
+
text = recognizer.recognize_google(audio_record)
|
98 |
+
pre_text = preprocess_text(text)
|
99 |
+
title_seq = tokenizer.texts_to_sequences([pre_text])
|
100 |
+
padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
|
101 |
+
inp1 = np.array(padded_title_seq)
|
102 |
+
text_prediction = text_model.predict(inp1)
|
103 |
+
|
104 |
+
os.remove(temp_audio_path)
|
105 |
+
max_index = text_prediction.argmax()
|
106 |
+
return mapping[max_index]
|
107 |
+
|
108 |
+
# Predict emotion from audio
|
109 |
+
def predict_emotion(audio_data):
|
110 |
+
sample_rate, data = audio_data
|
111 |
+
data = data.flatten()
|
112 |
+
|
113 |
+
if data.dtype != np.float32:
|
114 |
+
data = data.astype(np.float32)
|
115 |
+
data = data / np.max(np.abs(data))
|
116 |
+
|
117 |
+
features = extract_features(data, sample_rate)
|
118 |
+
features = np.expand_dims(features, axis=0)
|
119 |
+
|
120 |
+
if features.ndim == 3:
|
121 |
+
features = np.squeeze(features, axis=2)
|
122 |
+
elif features.ndim != 2:
|
123 |
+
raise ValueError("Features array has unexpected dimensions.")
|
124 |
+
|
125 |
+
scaled_features = scaler.transform(features)
|
126 |
+
scaled_features = np.expand_dims(scaled_features, axis=2)
|
127 |
+
|
128 |
+
prediction = audio_model.predict(scaled_features)
|
129 |
+
emotion_index = np.argmax(prediction)
|
130 |
+
|
131 |
+
num_classes = len(encoder.categories_[0])
|
132 |
+
emotion_array = np.zeros((1, num_classes))
|
133 |
+
emotion_array[0, emotion_index] = 1
|
134 |
+
|
135 |
+
emotion_label = encoder.inverse_transform(emotion_array)[0]
|
136 |
+
return emotion_label
|
137 |
+
|
138 |
+
def preprocess_image(image):
|
139 |
+
image = load_img(image, target_size=(48, 48), color_mode="grayscale")
|
140 |
+
image = img_to_array(image)
|
141 |
+
image = np.expand_dims(image, axis=0)
|
142 |
+
image = image / 255.0
|
143 |
+
return image
|
144 |
+
|
145 |
+
# Predict emotion from image
|
146 |
+
def predict_emotion_from_image(image):
|
147 |
+
preprocessed_image = preprocess_image(image)
|
148 |
+
prediction = image_model.predict(preprocessed_image)
|
149 |
+
emotion_index = np.argmax(prediction)
|
150 |
+
|
151 |
+
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
|
152 |
+
return mapping[emotion_index]
|
153 |
+
|
154 |
+
def process_video(video_path):
|
155 |
+
cap = cv2.VideoCapture(video_path)
|
156 |
+
frame_rate = cap.get(cv2.CAP_PROP_FPS)
|
157 |
+
|
158 |
+
frame_count = 0
|
159 |
+
predictions = []
|
160 |
+
|
161 |
+
while cap.isOpened():
|
162 |
+
ret, frame = cap.read()
|
163 |
+
if not ret:
|
164 |
+
break
|
165 |
+
|
166 |
+
# Process every nth frame (to speed up processing)
|
167 |
+
if frame_count % int(frame_rate) == 0:
|
168 |
+
# Convert frame to grayscale as required by your model
|
169 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
170 |
+
frame = cv2.resize(frame, (48, 48)) # Resize to match model input size
|
171 |
+
frame = img_to_array(frame)
|
172 |
+
frame = np.expand_dims(frame, axis=0) / 255.0
|
173 |
+
|
174 |
+
# Predict emotion
|
175 |
+
prediction = image_model.predict(frame)
|
176 |
+
predictions.append(np.argmax(prediction))
|
177 |
+
|
178 |
+
frame_count += 1
|
179 |
+
|
180 |
+
cap.release()
|
181 |
+
cv2.destroyAllWindows()
|
182 |
+
|
183 |
+
# Find the most common prediction
|
184 |
+
most_common_emotion = Counter(predictions).most_common(1)[0][0]
|
185 |
+
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
|
186 |
+
return mapping[most_common_emotion]
|
187 |
+
|
188 |
+
|
189 |
|
190 |
+
# Process audio from video and predict emotions
|
191 |
+
def process_audio_from_video(video_path):
|
192 |
+
audio_path = video_path.replace(".mp4", ".wav")
|
193 |
|
194 |
+
try:
|
195 |
+
# Extract audio using FFmpeg
|
196 |
+
ffmpeg.input(video_path).output(audio_path, format='wav', acodec='pcm_s16le', ac=1, ar='16000').run(overwrite_output=True)
|
197 |
+
|
198 |
+
recognizer = sr.Recognizer()
|
199 |
+
|
200 |
+
with sr.AudioFile(audio_path) as source:
|
201 |
+
audio_record = recognizer.record(source)
|
202 |
+
text = recognizer.recognize_google(audio_record)
|
203 |
+
pre_text = preprocess_text(text)
|
204 |
+
title_seq = tokenizer.texts_to_sequences([pre_text])
|
205 |
+
padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
|
206 |
+
inp1 = np.array(padded_title_seq)
|
207 |
+
text_prediction = text_model.predict(inp1)
|
208 |
+
|
209 |
+
os.remove(audio_path)
|
210 |
+
|
211 |
+
max_index = text_prediction.argmax()
|
212 |
+
text_emotion = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}[max_index]
|
213 |
+
|
214 |
+
# Load audio with pydub for NumPy conversion
|
215 |
+
audio_segment = AudioSegment.from_wav(audio_path)
|
216 |
+
sound_array = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
|
217 |
+
|
218 |
+
# Predict emotion from audio
|
219 |
+
audio_emotion = predict_emotion((16000, sound_array))
|
220 |
+
|
221 |
+
except Exception as e:
|
222 |
+
print(f"Error processing audio: {e}")
|
223 |
+
audio_emotion = "Error in audio processing"
|
224 |
+
|
225 |
+
return text_emotion, audio_emotion
|
226 |
+
|
227 |
+
# Main function to handle video emotion recognition
|
228 |
def transcribe_and_predict_video(video):
|
|
|
229 |
image_emotion = process_video(video)
|
|
|
|
|
230 |
text_emotion, audio_emotion = process_audio_from_video(video)
|
231 |
+
return f"Text Emotion: {text_emotion}, Audio Emotion: {audio_emotion}, Image Emotion: {image_emotion}"
|
232 |
+
|
233 |
+
# Create Gradio interface
|
234 |
+
iface = gr.Interface(fn=transcribe_and_predict_video,
|
235 |
+
inputs=gr.Video(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
outputs="text",
|
237 |
+
title="Multimodal Emotion Recognition from Video",
|
238 |
+
description="Upload a video to get text, audio, and image emotion predictions.")
|
239 |
|
240 |
iface.launch()
|