Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -61,26 +61,45 @@ def preprocess_text(text):
|
|
61 |
return ' '.join(lemmatized_tokens)
|
62 |
|
63 |
# Extract features from audio
|
|
|
|
|
|
|
|
|
|
|
64 |
def extract_features(data, sample_rate):
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
return result
|
83 |
|
|
|
84 |
# Predict emotion from text
|
85 |
def find_emotion_using_text(sample_rate, audio_data, recognizer):
|
86 |
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
|
@@ -292,6 +311,9 @@ def respond(message, history: list[tuple[str, str]], system_message, max_tokens,
|
|
292 |
# Function to handle video processing and interaction
|
293 |
def transcribe_and_predict_video(video, user_input, chat_history=[]):
|
294 |
# Process the video for emotions (use your own emotion detection functions)
|
|
|
|
|
|
|
295 |
image_emotion = process_video(video)
|
296 |
text_emotion, audio_emotion,text = process_audio_from_video(video)
|
297 |
em = [image_emotion, text_emotion, audio_emotion]
|
|
|
61 |
return ' '.join(lemmatized_tokens)
|
62 |
|
63 |
# Extract features from audio
|
64 |
+
import numpy as np
|
65 |
+
import torch
|
66 |
+
import torchaudio
|
67 |
+
import torchaudio.transforms as T
|
68 |
+
|
69 |
def extract_features(data, sample_rate):
|
70 |
+
# List to collect all features
|
71 |
+
features = []
|
72 |
+
|
73 |
+
# Zero Crossing Rate (ZCR)
|
74 |
+
zcr = T.ZeroCrossingRate()(data)
|
75 |
+
features.append(torch.mean(zcr).numpy())
|
76 |
+
|
77 |
+
# Chroma Short-Time Fourier Transform (STFT)
|
78 |
+
stft = T.MelSpectrogram(sample_rate)(data)
|
79 |
+
chroma_stft = torch.mean(stft, dim=-1).numpy() # Take mean across the time dimension
|
80 |
+
features.append(chroma_stft)
|
81 |
+
|
82 |
+
# Mel Frequency Cepstral Coefficients (MFCC)
|
83 |
+
mfcc_transform = T.MFCC(sample_rate=sample_rate, melkwargs={"n_fft": 400, "hop_length": 160, "n_mels": 23})
|
84 |
+
mfcc = mfcc_transform(data)
|
85 |
+
mfcc = torch.mean(mfcc, dim=-1).numpy() # Take mean across the time dimension
|
86 |
+
features.append(mfcc)
|
87 |
+
|
88 |
+
# Root Mean Square Energy (RMS)
|
89 |
+
rms = torch.mean(T.MelSpectrogram(sample_rate)(data), dim=-1) # Same as RMS feature extraction
|
90 |
+
features.append(rms.numpy())
|
91 |
+
|
92 |
+
# Mel Spectrogram
|
93 |
+
mel = T.MelSpectrogram(sample_rate)(data)
|
94 |
+
mel = torch.mean(mel, dim=-1).numpy() # Take mean across the time dimension
|
95 |
+
features.append(mel)
|
96 |
+
|
97 |
+
# Convert list of features to a single numpy array
|
98 |
+
result = np.hstack(features)
|
99 |
+
|
100 |
return result
|
101 |
|
102 |
+
|
103 |
# Predict emotion from text
|
104 |
def find_emotion_using_text(sample_rate, audio_data, recognizer):
|
105 |
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
|
|
|
311 |
# Function to handle video processing and interaction
|
312 |
def transcribe_and_predict_video(video, user_input, chat_history=[]):
|
313 |
# Process the video for emotions (use your own emotion detection functions)
|
314 |
+
|
315 |
+
if chat_history is None:
|
316 |
+
chat_history = []
|
317 |
image_emotion = process_video(video)
|
318 |
text_emotion, audio_emotion,text = process_audio_from_video(video)
|
319 |
em = [image_emotion, text_emotion, audio_emotion]
|