Spaces:
Running
Running
# import gradio as gr | |
# import tensorflow as tf | |
# import requests | |
# import os | |
# import numpy as np | |
# import pandas as pd | |
# import huggingface_hub | |
# from huggingface_hub import Repository | |
# from datetime import datetime | |
# import scipy.ndimage.interpolation as inter | |
# import datasets | |
# from datasets import load_dataset, Image | |
# from PIL import Image | |
# from paddleocr import PaddleOCR | |
# from doctr.io import DocumentFile | |
# os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Use GPU 0, adjust if needed | |
# os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true" | |
# from doctr.models import ocr_predictor | |
# model = ocr_predictor(det_arch='db_resnet50', reco_arch='crnn_vgg16_bn', pretrained=True) | |
# """ | |
# Perform OCR with doctr | |
# """ | |
# def ocr_with_doctr(file): | |
# text_output = '' | |
# # Load the document | |
# doc = DocumentFile.from_pdf(file) | |
# # Perform OCR | |
# result = ocr_model(doc) | |
# # Extract text from OCR result | |
# for page in result.pages: | |
# for block in page.blocks: | |
# for line in block.lines: | |
# text_output += " ".join([word.value for word in line.words]) + "\n" | |
# return text_output | |
# """ | |
# Paddle OCR | |
# """ | |
# def ocr_with_paddle(img): | |
# finaltext = '' | |
# ocr = PaddleOCR(lang='en', use_angle_cls=True, use_gpu=True) | |
# # img_path = 'exp.jpeg' | |
# result = ocr.ocr(img) | |
# for i in range(len(result[0])): | |
# text = result[0][i][1][0] | |
# finaltext += ' '+ text | |
# return finaltext | |
# def generate_ocr(Method, file): | |
# text_output = '' | |
# if isinstance(file, bytes): # Handle file uploaded as bytes | |
# file = io.BytesIO(file) | |
# if file.name.endswith('.pdf'): | |
# # Perform OCR on the PDF using doctr | |
# text_output = ocr_with_doctr(file) | |
# else: | |
# # Handle image file | |
# img_np = np.array(Image.open(file)) | |
# text_output = generate_text_from_image(Method, img_np) | |
# return text_output | |
# def generate_text_from_image(Method, img): | |
# text_output = '' | |
# if Method == 'PaddleOCR': | |
# text_output = ocr_with_paddle(img) | |
# return text_output | |
# import gradio as gr | |
# image_or_pdf = gr.File(label="Upload an image or PDF") | |
# method = gr.Radio(["PaddleOCR"], value="PaddleOCR") | |
# output = gr.Textbox(label="Output") | |
# demo = gr.Interface( | |
# generate_ocr, | |
# [method, image_or_pdf], | |
# output, | |
# title="Optical Character Recognition", | |
# css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}", | |
# article="""<p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at | |
# <a href="mailto:[email protected]" target="_blank">[email protected]</a> | |
# <p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>""" | |
# ) | |
# demo.launch(share=True) | |
import paddle | |
print("PaddlePaddle Version:", paddle.__version__) | |
print("Is GPU available:", paddle.is_compiled_with_cuda()) | |
import tensorflow as tf | |
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) | |
import tensorflow as tf | |
print(tf.test.is_built_with_cuda()) | |