Spaces:
Running
Running
import gradio as gr | |
import tensorflow as tf | |
import keras_ocr | |
import requests | |
import cv2 | |
import os | |
import csv | |
import numpy as np | |
import pandas as pd | |
import huggingface_hub | |
from huggingface_hub import Repository | |
from datetime import datetime | |
import scipy.ndimage.interpolation as inter | |
import easyocr | |
import datasets | |
from datasets import load_dataset, Image | |
from PIL import Image | |
from paddleocr import PaddleOCR | |
from doctr.io import DocumentFile | |
from doctr.models import ocr_predictor | |
ocr_model = ocr_predictor(pretrained=True) | |
""" | |
Perform OCR with doctr | |
""" | |
def ocr_with_doctr(file): | |
text_output = '' | |
# Load the document | |
doc = DocumentFile.from_pdf(file) | |
# Perform OCR | |
result = ocr_model(doc) | |
# Extract text from OCR result | |
for page in result.pages: | |
for block in page.blocks: | |
for line in block.lines: | |
text_output += " ".join([word.value for word in line.words]) + "\n" | |
return text_output | |
""" | |
Paddle OCR | |
""" | |
def ocr_with_paddle(img): | |
finaltext = '' | |
ocr = PaddleOCR(lang='en', use_angle_cls=True) | |
# img_path = 'exp.jpeg' | |
result = ocr.ocr(img) | |
for i in range(len(result[0])): | |
text = result[0][i][1][0] | |
finaltext += ' '+ text | |
return finaltext | |
""" | |
Keras OCR | |
""" | |
def ocr_with_keras(img): | |
output_text = '' | |
pipeline=keras_ocr.pipeline.Pipeline() | |
images=[keras_ocr.tools.read(img)] | |
predictions=pipeline.recognize(images) | |
first=predictions[0] | |
for text,box in first: | |
output_text += ' '+ text | |
return output_text | |
""" | |
easy OCR | |
""" | |
# gray scale image | |
def get_grayscale(image): | |
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# Thresholding or Binarization | |
def thresholding(src): | |
return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1] | |
def ocr_with_easy(img): | |
gray_scale_image=get_grayscale(img) | |
thresholding(gray_scale_image) | |
cv2.imwrite('image.png',gray_scale_image) | |
reader = easyocr.Reader(['th','en']) | |
bounds = reader.readtext('image.png',paragraph="False",detail = 0) | |
bounds = ''.join(bounds) | |
return bounds | |
def generate_ocr(Method, file): | |
text_output = '' | |
if isinstance(file, bytes): # Handle file uploaded as bytes | |
file = io.BytesIO(file) | |
if file.name.endswith('.pdf'): | |
# Perform OCR on the PDF using doctr | |
text_output = ocr_with_doctr(file) | |
else: | |
# Handle image file | |
img_np = np.array(Image.open(file)) | |
text_output = generate_text_from_image(Method, img_np) | |
return text_output | |
def generate_text_from_image(Method, img): | |
text_output = '' | |
if Method == 'EasyOCR': | |
text_output = ocr_with_easy(img) | |
elif Method == 'KerasOCR': | |
text_output = ocr_with_keras(img) | |
elif Method == 'PaddleOCR': | |
text_output = ocr_with_paddle(img) | |
return text_output | |
import gradio as gr | |
image_or_pdf = gr.File(label="Upload an image or PDF") | |
method = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR") | |
output = gr.Textbox(label="Output") | |
demo = gr.Interface( | |
generate_ocr, | |
[method, image_or_pdf], | |
output, | |
title="Optical Character Recognition", | |
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}", | |
article="""<p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at | |
<a href="mailto:[email protected]" target="_blank">[email protected]</a> | |
<p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>""" | |
) | |
demo.launch(show_error=True) | |