Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import os | |
from datasets import load_dataset, Image | |
from PIL import Image | |
from paddleocr import PaddleOCR | |
from doctr.io import DocumentFile | |
import torch | |
# Set environment variable for PyTorch usage | |
os.environ['USE_TF'] = '0' # Set TensorFlow to off | |
os.environ['USE_TORCH'] = '1' # Set PyTorch to on | |
from doctr.models import ocr_predictor | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Example for PyTorch model or doctr model | |
ocr_model = ocr_predictor(det_arch='db_mobilenet_v3_large', reco_arch='crnn_mobilenet_v3_small', pretrained=True).to(device) | |
import torch | |
# Check if CUDA is available | |
if torch.cuda.is_available(): | |
print(f"GPU is available. Device: {torch.cuda.get_device_name(0)}") | |
else: | |
print("GPU is not available, using CPU.") | |
""" | |
Perform OCR with doctr | |
""" | |
def ocr_with_doctr(file): | |
text_output = '' | |
# Load the document | |
doc = DocumentFile.from_pdf(file) | |
# Perform OCR | |
result = ocr_model(doc) | |
# Extract text from OCR result | |
for page in result.pages: | |
for block in page.blocks: | |
for line in block.lines: | |
text_output += " ".join([word.value for word in line.words]) + "\n" | |
return text_output | |
""" | |
Paddle OCR | |
""" | |
def ocr_with_paddle(img): | |
finaltext = '' | |
ocr = PaddleOCR(lang='en', use_angle_cls=True, use_gpu=True) | |
# img_path = 'exp.jpeg' | |
result = ocr.ocr(img) | |
for i in range(len(result[0])): | |
text = result[0][i][1][0] | |
finaltext += ' '+ text | |
return finaltext | |
def generate_ocr(Method, file): | |
text_output = '' | |
if isinstance(file, bytes): # Handle file uploaded as bytes | |
file = io.BytesIO(file) | |
if file.name.endswith('.pdf'): | |
# Perform OCR on the PDF using doctr | |
text_output = ocr_with_doctr(file) | |
else: | |
# Handle image file | |
img_np = np.array(Image.open(file)) | |
text_output = generate_text_from_image(Method, img_np) | |
return text_output | |
def generate_text_from_image(Method, img): | |
text_output = '' | |
if Method == 'PaddleOCR': | |
text_output = ocr_with_paddle(img) | |
return text_output | |
import gradio as gr | |
image_or_pdf = gr.File(label="Upload an image or PDF") | |
method = gr.Radio(["PaddleOCR"], value="PaddleOCR") | |
output = gr.Textbox(label="Output") | |
demo = gr.Interface( | |
generate_ocr, | |
[method, image_or_pdf], | |
output, | |
title="Optical Character Recognition", | |
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}", | |
article="""<p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at | |
<a href="mailto:[email protected]" target="_blank">[email protected]</a> | |
<p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>""" | |
) | |
demo.launch(share=True) | |
# import os | |
# # Disable TensorFlow to ensure PyTorch is used | |
# os.environ['USE_TF'] = '0' | |
# import torch | |
# print(torch.cuda.is_available()) # Should return True if GPU is available | |