Spaces:
Sleeping
Sleeping
File size: 3,974 Bytes
e28221f 3a09006 e28221f 3a09006 e916990 3a09006 6aa8b86 3a09006 e28221f 3a09006 e28221f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import argparse
import uvicorn
import sys
from fastapi import FastAPI
from pydantic import BaseModel, Field
from sse_starlette.sse import EventSourceResponse
from utils.logger import logger
from networks.message_streamer import MessageStreamer
from messagers.message_composer import MessageComposer
class ChatAPIApp:
def __init__(self):
self.app = FastAPI(
docs_url="/",
title="HuggingFace LLM API",
swagger_ui_parameters={"defaultModelsExpandDepth": -1},
version="1.0",
)
self.setup_routes()
def get_available_models(self):
self.available_models = [
{
"id": "mixtral-8x7b",
"description": "[Mixtral-8x7B-Instruct-v0.1]: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1",
},
{
"id": "mistral-7b",
"description": "[Mistral-7B-Instruct-v0.2]: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
},
{
"id": "openchat-3.5",
"description": "[openchat_3.5]: https://huggingface.co/openchat/openchat_3.5",
},
]
return self.available_models
class ChatCompletionsPostItem(BaseModel):
model: str = Field(
default="mixtral-8x7b",
description="(str) `mixtral-8x7b`",
)
messages: list = Field(
default=[{"role": "user", "content": "Hello, who are you?"}],
description="(list) Messages",
)
temperature: float = Field(
default=0.01,
description="(float) Temperature",
)
max_tokens: int = Field(
default=8192,
description="(int) Max tokens",
)
stream: bool = Field(
default=True,
description="(bool) Stream",
)
def chat_completions(self, item: ChatCompletionsPostItem):
streamer = MessageStreamer(model=item.model)
composer = MessageComposer(model=item.model)
composer.merge(messages=item.messages)
return EventSourceResponse(
streamer.chat(
prompt=composer.merged_str,
temperature=item.temperature,
max_new_tokens=item.max_tokens,
stream=item.stream,
yield_output=True,
),
media_type="text/event-stream",
)
def setup_routes(self):
for prefix in ["", "/v1"]:
self.app.get(
prefix + "/models",
summary="Get available models",
)(self.get_available_models)
self.app.post(
prefix + "/chat/completions",
summary="Chat completions in conversation session",
)(self.chat_completions)
class ArgParser(argparse.ArgumentParser):
def __init__(self, *args, **kwargs):
super(ArgParser, self).__init__(*args, **kwargs)
self.add_argument(
"-s",
"--server",
type=str,
default="0.0.0.0",
help="Server IP for HF LLM Chat API",
)
self.add_argument(
"-p",
"--port",
type=int,
default=23333,
help="Server Port for HF LLM Chat API",
)
self.add_argument(
"-d",
"--dev",
default=False,
action="store_true",
help="Run in dev mode",
)
self.args = self.parse_args(sys.argv[1:])
app = ChatAPIApp().app
if __name__ == "__main__":
args = ArgParser().args
if args.dev:
uvicorn.run("__main__:app", host=args.server, port=args.port, reload=True)
else:
uvicorn.run("__main__:app", host=args.server, port=args.port, reload=False)
# python -m apis.chat_api # [Docker] on product mode
# python -m apis.chat_api -d # [Dev] on develop mode
|