Spaces:
Running
Running
init
Browse files- app.py +241 -0
- lm_steer/__init__.py +0 -0
- lm_steer/__pycache__/__init__.cpython-310.pyc +0 -0
- lm_steer/__pycache__/utils.cpython-310.pyc +0 -0
- lm_steer/arguments.py +59 -0
- lm_steer/models/__pycache__/get_model.cpython-310.pyc +0 -0
- lm_steer/models/__pycache__/model_base.cpython-310.pyc +0 -0
- lm_steer/models/__pycache__/model_gpt_neo.cpython-310.pyc +0 -0
- lm_steer/models/__pycache__/model_gpt_neox.cpython-310.pyc +0 -0
- lm_steer/models/__pycache__/model_utils.cpython-310.pyc +0 -0
- lm_steer/models/__pycache__/steers.cpython-310.pyc +0 -0
- lm_steer/models/get_model.py +43 -0
- lm_steer/models/model_base.py +173 -0
- lm_steer/models/model_embedding_tuning_gpt_neo.py +59 -0
- lm_steer/models/model_gpt_j.py +333 -0
- lm_steer/models/model_gpt_neo.py +66 -0
- lm_steer/models/model_gpt_neox.py +105 -0
- lm_steer/models/model_lora_gpt_neo.py +59 -0
- lm_steer/models/model_utils.py +81 -0
- lm_steer/models/steers.py +96 -0
- lm_steer/utils.py +45 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://huggingface.co/spaces/Glaciohound/LM-Steer
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import streamlit as st
|
5 |
+
import random
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
from lm_steer.models.get_model import get_model
|
9 |
+
|
10 |
+
|
11 |
+
@st.cache_resource(show_spinner="Loading model...")
|
12 |
+
def st_get_model(model_name, low_resource_mode):
|
13 |
+
device = torch.device("cuda:0") if torch.cuda.is_available() \
|
14 |
+
else torch.device("cpu")
|
15 |
+
model, tokenizer = get_model(
|
16 |
+
model_name, "final_layer", "multiply",
|
17 |
+
4,
|
18 |
+
1000, 1e-3, 1e-2, low_resource_mode
|
19 |
+
)
|
20 |
+
model.to_device(device)
|
21 |
+
ckpt = torch.load(f"checkpoints/{model_name}.pt", map_location=device)
|
22 |
+
model.load_state_dict(ckpt[1])
|
23 |
+
return model, tokenizer
|
24 |
+
|
25 |
+
|
26 |
+
def word_embedding_space_analysis(model, tokenizer, dim):
|
27 |
+
matrix = model.steer.projector1.data[dim].matmul(
|
28 |
+
model.steer.projector2.data[dim].transpose(0, 1))
|
29 |
+
S, V, D = torch.linalg.svd(matrix)
|
30 |
+
embeddings = model.steer.lm_head.weight
|
31 |
+
|
32 |
+
data = []
|
33 |
+
for _i in range(10):
|
34 |
+
left_tokens = embeddings.matmul(D[_i]).argsort()[-20:].flip(0)
|
35 |
+
right_tokens = embeddings.matmul(D[_i]).argsort()[:20]
|
36 |
+
|
37 |
+
def filter_words(side_tokens):
|
38 |
+
output = []
|
39 |
+
for t in side_tokens:
|
40 |
+
word = tokenizer.decode([t])
|
41 |
+
if not word[0].isalpha() and word[1:].isalpha():
|
42 |
+
output.append(word[1:]+"-")
|
43 |
+
return output
|
44 |
+
|
45 |
+
data.append([
|
46 |
+
", ".join(filter_words(side_tokens))
|
47 |
+
for side_tokens in [left_tokens, right_tokens]
|
48 |
+
])
|
49 |
+
st.table(pd.DataFrame(
|
50 |
+
data,
|
51 |
+
columns=["One Direction", "Another Direction"],
|
52 |
+
index=[f"Dim {_i}" for _i in range(10)],
|
53 |
+
))
|
54 |
+
|
55 |
+
|
56 |
+
def main():
|
57 |
+
# set up the page
|
58 |
+
random.seed(0)
|
59 |
+
title = "LM-Steer: Word Embeddings Are Steers for Language Models"
|
60 |
+
st.set_page_config(
|
61 |
+
layout="wide",
|
62 |
+
page_title=title,
|
63 |
+
page_icon="🛞",
|
64 |
+
)
|
65 |
+
st.title(title)
|
66 |
+
'''
|
67 |
+
Live demo for the paper ["**LM-Steer: Word Embeddings Are Steers for
|
68 |
+
Language Models**"](https://arxiv.org/abs/2305.12798) (**ACL 2024
|
69 |
+
Outstanding Paper Award**) by Chi Han, Jialiang Xu, Manling Li, Yi Fung,
|
70 |
+
Chenkai Sun, Nan Jiang, Tarek Abdelzaher, Heng Ji. GitHub repository:
|
71 |
+
https://github.com/Glaciohound/LM-Steer.
|
72 |
+
'''
|
73 |
+
st.subheader("Overview")
|
74 |
+
st.image('https://raw.githubusercontent.com/Glaciohound/LM-Steer'
|
75 |
+
'/refs/heads/main/assets/overview_fig.jpg')
|
76 |
+
'''
|
77 |
+
Language models (LMs) automatically learn word embeddings during
|
78 |
+
pre-training on language corpora. Although word embeddings are usually
|
79 |
+
interpreted as feature vectors for individual words, their roles in
|
80 |
+
language model generation remain underexplored. In this work, we
|
81 |
+
theoretically and empirically revisit output word embeddings and find that
|
82 |
+
their linear transformations are equivalent to steering language model
|
83 |
+
generation styles. We name such steers LM-Steers and find them existing in
|
84 |
+
LMs of all sizes. It requires learning parameters equal to 0.2% of the
|
85 |
+
original LMs' size for steering each style.
|
86 |
+
'''
|
87 |
+
|
88 |
+
# set up the model
|
89 |
+
st.divider()
|
90 |
+
st.divider()
|
91 |
+
st.subheader("Select a model:")
|
92 |
+
'''
|
93 |
+
Due to resource limits, we are only able to provide a few models for
|
94 |
+
steering. You can also refer to the Github repository:
|
95 |
+
https://github.com/Glaciohound/LM-Steer for hosting larger models.
|
96 |
+
'''
|
97 |
+
col1, col2 = st.columns(2)
|
98 |
+
st.session_state.model_name = col1.selectbox(
|
99 |
+
"Select a model to steer",
|
100 |
+
[
|
101 |
+
"gpt2",
|
102 |
+
"gpt2-medium",
|
103 |
+
"gpt2-large",
|
104 |
+
"EleutherAI/pythia-70m",
|
105 |
+
"EleutherAI/pythia-160m",
|
106 |
+
"EleutherAI/pythia-410m",
|
107 |
+
# "EleutherAI/pythia-1b", "EleutherAI/pythia-1.4b",
|
108 |
+
# "EleutherAI/pythia-2.8b", "EleutherAI/pythia-6.9b",
|
109 |
+
# "EleutherAI/gpt-j-6B",
|
110 |
+
],
|
111 |
+
)
|
112 |
+
low_resource_mode = True if st.session_state.model_name in (
|
113 |
+
"EleutherAI/pythia-1.4b", "EleutherAI/pythia-2.8b",
|
114 |
+
"EleutherAI/pythia-6.9b", "EleutherAI/gpt-j-6B",
|
115 |
+
) else False
|
116 |
+
model, tokenizer = st_get_model(
|
117 |
+
st.session_state.model_name, low_resource_mode)
|
118 |
+
num_param = model.steer.projector1.data.shape[1] ** 2 / 1024 ** 2
|
119 |
+
total_param = sum(p.numel() for _, p in model.named_parameters()) / \
|
120 |
+
1024 ** 2
|
121 |
+
ratio = num_param / total_param
|
122 |
+
col2.write(f"Steered {num_param:.1f}M out of {total_param:.1f}M "
|
123 |
+
"parameters, ratio: {:.2%}".format(ratio))
|
124 |
+
|
125 |
+
# steering
|
126 |
+
steer_range = 4.
|
127 |
+
steer_interval = 0.5
|
128 |
+
st.subheader("Enter a sentence and steer the model")
|
129 |
+
st.session_state.prompt = st.text_input(
|
130 |
+
"Enter a prompt",
|
131 |
+
st.session_state.get("prompt", "My life")
|
132 |
+
)
|
133 |
+
# col1, col2, col3 = st.columns(3, gap="medium")
|
134 |
+
col1, col2, col3 = st.columns([2, 2, 1], gap="medium")
|
135 |
+
sentiment = col1.slider(
|
136 |
+
"Sentiment", -steer_range, steer_range, 3.0, steer_interval)
|
137 |
+
detoxification = col2.slider(
|
138 |
+
"Detoxification Strength", -steer_range, steer_range, 0.0,
|
139 |
+
steer_interval)
|
140 |
+
max_length = col3.number_input("Max length", 50, 300, 50, 50)
|
141 |
+
col1, col2, col3, _ = st.columns(4)
|
142 |
+
randomness = col2.checkbox("Random sampling", value=False)
|
143 |
+
|
144 |
+
if "output" not in st.session_state:
|
145 |
+
st.session_state.output = ""
|
146 |
+
if col1.button("Steer and generate!", type="primary"):
|
147 |
+
steer_values = [detoxification, 0, sentiment, 0]
|
148 |
+
st.session_state.output = model.generate(
|
149 |
+
st.session_state.prompt,
|
150 |
+
steer_values,
|
151 |
+
seed=None if randomness else 0,
|
152 |
+
min_length=0,
|
153 |
+
max_length=max_length,
|
154 |
+
do_sample=True,
|
155 |
+
)
|
156 |
+
analyzed_text = \
|
157 |
+
st.text_area("Generated text:", st.session_state.output, height=200)
|
158 |
+
|
159 |
+
# Analysing the sentence
|
160 |
+
st.divider()
|
161 |
+
st.divider()
|
162 |
+
st.subheader("Analyzing Styled Texts")
|
163 |
+
'''
|
164 |
+
LM-Steer also serves as a probe for analyzing the text. It can be used to
|
165 |
+
analyze the sentiment and detoxification of the text. Now, we proceed and
|
166 |
+
use LM-Steer to analyze the text in the box above. You can also modify the
|
167 |
+
text or use your own. Please note that these two dimensions can be
|
168 |
+
entangled, as a negative sentiment may also detoxify the text.
|
169 |
+
'''
|
170 |
+
if st.session_state.get("output", "") != "" and \
|
171 |
+
st.button("Analyze the styled text", type="primary"):
|
172 |
+
col1, col2 = st.columns(2)
|
173 |
+
for name, col, dim, color in zip(
|
174 |
+
["Sentiment", "Detoxification"],
|
175 |
+
[col1, col2],
|
176 |
+
[2, 0],
|
177 |
+
["#ff7f0e", "#1f77b4"],
|
178 |
+
):
|
179 |
+
col.subheader(name)
|
180 |
+
# classification
|
181 |
+
col.markdown("##### Dimension-Wise Classification Distribution")
|
182 |
+
_, dist_list, _ = model.steer_analysis(
|
183 |
+
analyzed_text,
|
184 |
+
dim, -steer_range, steer_range,
|
185 |
+
bins=2*int(steer_range)+1,
|
186 |
+
)
|
187 |
+
dist_list = np.array(dist_list)
|
188 |
+
col.bar_chart(
|
189 |
+
pd.DataFrame(
|
190 |
+
{
|
191 |
+
"Value": dist_list[:, 0],
|
192 |
+
"Probability": dist_list[:, 1],
|
193 |
+
}
|
194 |
+
), x="Value", y="Probability",
|
195 |
+
color=color,
|
196 |
+
)
|
197 |
+
|
198 |
+
# key tokens
|
199 |
+
pos_steer, neg_steer = np.zeros((2, 4))
|
200 |
+
pos_steer[dim] = 1
|
201 |
+
neg_steer[dim] = -1
|
202 |
+
_, token_evidence = model.evidence_words(
|
203 |
+
analyzed_text,
|
204 |
+
[pos_steer, neg_steer],
|
205 |
+
)
|
206 |
+
tokens = tokenizer(analyzed_text).input_ids
|
207 |
+
tokens = [f"{i:3d}: {tokenizer.decode([t])}"
|
208 |
+
for i, t in enumerate(tokens)]
|
209 |
+
col.markdown("##### Token's Evidence Score in the Dimension")
|
210 |
+
col.bar_chart(
|
211 |
+
pd.DataFrame(
|
212 |
+
{
|
213 |
+
"Token": tokens[1:],
|
214 |
+
"Evidence": token_evidence,
|
215 |
+
}
|
216 |
+
), x="Token", y="Evidence",
|
217 |
+
horizontal=True, color=color,
|
218 |
+
)
|
219 |
+
|
220 |
+
st.divider()
|
221 |
+
st.divider()
|
222 |
+
st.subheader("The Word Embeddings Space Analysis")
|
223 |
+
'''
|
224 |
+
LM-Steer provides a lens on how word embeddings correlate with LM word
|
225 |
+
embeddings: what word dimensions contribute to or contrast to a specific
|
226 |
+
style. This analysis can be used to understand the word embedding space
|
227 |
+
and how it steers the model's generation.
|
228 |
+
Note that due to the bidirectional nature of the embedding spaces, in each
|
229 |
+
dimension, sometimes only one side of the word embeddings is most relevant
|
230 |
+
to the style (can be either left or right).
|
231 |
+
'''
|
232 |
+
dimension = st.selectbox(
|
233 |
+
"Select a dimension to analyze",
|
234 |
+
["Sentiment", "Detoxification"],
|
235 |
+
)
|
236 |
+
dim = 2 if dimension == "Sentiment" else 0
|
237 |
+
word_embedding_space_analysis(model, tokenizer, dim)
|
238 |
+
|
239 |
+
|
240 |
+
if __name__ == "__main__":
|
241 |
+
main()
|
lm_steer/__init__.py
ADDED
File without changes
|
lm_steer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (166 Bytes). View file
|
|
lm_steer/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (1.44 kB). View file
|
|
lm_steer/arguments.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pprint import pprint
|
2 |
+
import argparse
|
3 |
+
from .utils import set_seed
|
4 |
+
|
5 |
+
|
6 |
+
def parse_args():
|
7 |
+
# Model related
|
8 |
+
parser = argparse.ArgumentParser()
|
9 |
+
parser.add_argument("--model_name", type=str,
|
10 |
+
default='EleutherAI/gpt-neo-2.7B')
|
11 |
+
parser.add_argument("--adaptor_class", type=str, default="multiply")
|
12 |
+
parser.add_argument("--adapted_component", type=str, default="final_layer")
|
13 |
+
parser.add_argument("--epsilon", type=float, default=1e-3)
|
14 |
+
parser.add_argument("--init_var", type=float, default=1e-2)
|
15 |
+
parser.add_argument("--rank", type=int, default=1000)
|
16 |
+
parser.add_argument("--num_steers", type=int, default=10)
|
17 |
+
parser.add_argument("--temperature", type=int, default=1)
|
18 |
+
parser.add_argument("--cuda", action="store_true")
|
19 |
+
parser.add_argument("--low_resource_mode", action="store_true")
|
20 |
+
|
21 |
+
# Data related
|
22 |
+
parser.add_argument("--data_dir", type=str, default=None)
|
23 |
+
parser.add_argument("--dataset_name", type=str, default=None)
|
24 |
+
parser.add_argument("--eval_file", type=str, default=None)
|
25 |
+
parser.add_argument("--output_file", type=str, default=None)
|
26 |
+
parser.add_argument("--data_size", type=int, default=None)
|
27 |
+
parser.add_argument("--split", type=str, default=None)
|
28 |
+
|
29 |
+
# Training related
|
30 |
+
parser.add_argument("--regularization", type=float, default=0)
|
31 |
+
parser.add_argument("--optimizer", type=str, default="Adam")
|
32 |
+
parser.add_argument("--lr", type=float, default=1e-3)
|
33 |
+
parser.add_argument("--gamma_mean", type=float, default=0.99)
|
34 |
+
parser.add_argument("--n_steps", type=int, default=10000)
|
35 |
+
parser.add_argument("--seed", type=int, default=0)
|
36 |
+
parser.add_argument("--ckpt_name", type=str, default=None)
|
37 |
+
parser.add_argument("--max_length", type=int, default=256)
|
38 |
+
parser.add_argument("--batch_size", type=int, default=32)
|
39 |
+
parser.add_argument("--log_step", type=int, default=500)
|
40 |
+
parser.add_argument("--subset", type=int, default=None)
|
41 |
+
parser.add_argument("--dummy_steer", type=int, default=None)
|
42 |
+
parser.add_argument("--training_steer", type=int, default=0)
|
43 |
+
|
44 |
+
# Evaluation related
|
45 |
+
parser.add_argument("--eval_size", type=int, default=None)
|
46 |
+
parser.add_argument("--steer_values", default=None, nargs="*", type=float)
|
47 |
+
parser.add_argument("--verbose", action="store_true")
|
48 |
+
parser.add_argument("--top_p", type=float, default=1)
|
49 |
+
|
50 |
+
# transfer related
|
51 |
+
parser.add_argument("--transfer_from", type=str, default=None)
|
52 |
+
|
53 |
+
args = parser.parse_args()
|
54 |
+
|
55 |
+
set_seed(args.seed)
|
56 |
+
|
57 |
+
print("arguments:")
|
58 |
+
pprint(args.__dict__)
|
59 |
+
return args
|
lm_steer/models/__pycache__/get_model.cpython-310.pyc
ADDED
Binary file (1.48 kB). View file
|
|
lm_steer/models/__pycache__/model_base.cpython-310.pyc
ADDED
Binary file (4.88 kB). View file
|
|
lm_steer/models/__pycache__/model_gpt_neo.cpython-310.pyc
ADDED
Binary file (2.6 kB). View file
|
|
lm_steer/models/__pycache__/model_gpt_neox.cpython-310.pyc
ADDED
Binary file (3.7 kB). View file
|
|
lm_steer/models/__pycache__/model_utils.cpython-310.pyc
ADDED
Binary file (2.23 kB). View file
|
|
lm_steer/models/__pycache__/steers.cpython-310.pyc
ADDED
Binary file (3.07 kB). View file
|
|
lm_steer/models/get_model.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
def get_model(model_name, adapted_component, adaptor_class, num_steers, rank,
|
3 |
+
epsilon, init_var, low_resource_mode):
|
4 |
+
if model_name.startswith("EleutherAI/gpt-neo") or \
|
5 |
+
model_name.startswith("gpt2"):
|
6 |
+
from lm_steer.models.model_gpt_neo import Switching_GPTNeoModel
|
7 |
+
model = Switching_GPTNeoModel(
|
8 |
+
model_name, adapted_component, adaptor_class, num_steers, rank,
|
9 |
+
epsilon, init_var, low_resource_mode)
|
10 |
+
return model, model.tokenizer
|
11 |
+
elif model_name.startswith("lora-gpt2"):
|
12 |
+
from lm_steer.models.model_lora_gpt_neo import LORA_GPTNeoModel
|
13 |
+
model = LORA_GPTNeoModel(model_name, rank, epsilon)
|
14 |
+
return model, model.tokenizer
|
15 |
+
elif model_name.startswith("embedding_tuning"):
|
16 |
+
from lm_steer.models.model_embedding_tuning_gpt_neo import \
|
17 |
+
EmbeddingTuning_GPTNeoModel
|
18 |
+
model = EmbeddingTuning_GPTNeoModel(model_name)
|
19 |
+
return model, model.tokenizer
|
20 |
+
elif model_name.startswith("prefix-gpt2"):
|
21 |
+
from lm_steer.models.model_prefix_gpt_neo import PREFIX_GPTNeoModel
|
22 |
+
model = PREFIX_GPTNeoModel(model_name)
|
23 |
+
return model, model.tokenizer
|
24 |
+
elif model_name.startswith("EleutherAI/pythia"):
|
25 |
+
from lm_steer.models.model_gpt_neox import Switching_GPTNeoXModel
|
26 |
+
model = Switching_GPTNeoXModel(
|
27 |
+
model_name, adapted_component, adaptor_class, num_steers, rank,
|
28 |
+
epsilon, init_var, low_resource_mode)
|
29 |
+
return model, model.tokenizer
|
30 |
+
elif model_name.startswith("EleutherAI/gpt-j"):
|
31 |
+
from lm_steer.models.model_gpt_j import Switching_GPTJModel
|
32 |
+
model = Switching_GPTJModel(
|
33 |
+
model_name, adapted_component, adaptor_class, num_steers, rank,
|
34 |
+
epsilon, init_var, low_resource_mode)
|
35 |
+
return model, model.tokenizer
|
36 |
+
elif model_name.startswith("microsoft/DialoGPT"):
|
37 |
+
from lm_steer.models.model_dialogpt import Switching_DialoGPTModel
|
38 |
+
model = Switching_DialoGPTModel(
|
39 |
+
model_name, adapted_component, adaptor_class, num_steers, rank,
|
40 |
+
epsilon, init_var, low_resource_mode)
|
41 |
+
return model, model.tokenizer
|
42 |
+
else:
|
43 |
+
raise NotImplementedError()
|
lm_steer/models/model_base.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from lm_steer.utils import set_seed
|
8 |
+
from .model_utils import find_max_subspans
|
9 |
+
|
10 |
+
|
11 |
+
punctuations = [
|
12 |
+
'!', '"', '$', '%', '&', "'", '(', ')', '*', '+', ',', '-', '.',
|
13 |
+
# '/', '#',
|
14 |
+
':', ';', '<', '=', '>', '?', '@',
|
15 |
+
'[', '\\', ']', '^', '_', '`',
|
16 |
+
'{', '|', '}', '~',
|
17 |
+
'¨', '©', 'ª', '«', '¬', '®', '¯', '°', '±', '²', '³', '´', 'µ', '¶', '·',
|
18 |
+
'¸', '¹', 'º', '»', '¼', '½', '¾',
|
19 |
+
'\n', ' ',
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
class LMSteerBase(nn.Module):
|
24 |
+
def evidence_words(self, prompt, comparing_steer_values,
|
25 |
+
truncation_length=1024, max_segments=4, max_length=10):
|
26 |
+
if isinstance(comparing_steer_values, list):
|
27 |
+
comparing_steer_values = \
|
28 |
+
torch.Tensor(comparing_steer_values).to(self.device)
|
29 |
+
if (comparing_steer_values[0] - comparing_steer_values[1]
|
30 |
+
).abs().sum() <= 0.2:
|
31 |
+
return [(prompt, None)]
|
32 |
+
tokenized = self.tokenizer(
|
33 |
+
prompt, return_tensors="pt",
|
34 |
+
max_length=truncation_length, truncation=True)
|
35 |
+
input_ids = torch.LongTensor(tokenized["input_ids"]).to(self.device)
|
36 |
+
input_ids = input_ids.expand(2, -1)
|
37 |
+
attention_mask = torch.LongTensor(tokenized["attention_mask"]).to(
|
38 |
+
self.device)
|
39 |
+
attention_mask = attention_mask.expand(2, -1)
|
40 |
+
self.steer.set_value(comparing_steer_values)
|
41 |
+
with torch.no_grad():
|
42 |
+
output = self.model(
|
43 |
+
input_ids=input_ids,
|
44 |
+
attention_mask=attention_mask,
|
45 |
+
labels=input_ids)
|
46 |
+
length = input_ids.shape[1]
|
47 |
+
loss_token = F.cross_entropy(
|
48 |
+
output.logits[:, :-1].reshape((2)*(length-1), -1),
|
49 |
+
input_ids[:, 1:].reshape(-1),
|
50 |
+
reduction="none"
|
51 |
+
)
|
52 |
+
loss_token = loss_token.reshape(2, length - 1)
|
53 |
+
|
54 |
+
token_evidence = (- loss_token[0] + loss_token[1])
|
55 |
+
tokens = input_ids[0]
|
56 |
+
evidence_segments = find_max_subspans(
|
57 |
+
token_evidence.cpu().numpy().tolist(), max_segments, max_length)[0]
|
58 |
+
evidence_segments = [
|
59 |
+
(_seg[0]+1, _seg[1]+1) for _seg in evidence_segments]
|
60 |
+
start = 0
|
61 |
+
output = []
|
62 |
+
if len(evidence_segments) > 0:
|
63 |
+
for _segment in evidence_segments:
|
64 |
+
if _segment[0] > start:
|
65 |
+
output.append((
|
66 |
+
self.tokenizer.decode(tokens[start: _segment[0]]),
|
67 |
+
None
|
68 |
+
))
|
69 |
+
output.append((
|
70 |
+
self.tokenizer.decode(tokens[_segment[0]: _segment[1]]),
|
71 |
+
"evidence"
|
72 |
+
))
|
73 |
+
start = _segment[1]
|
74 |
+
length = tokens.shape[-1]
|
75 |
+
if _segment[1] < length:
|
76 |
+
output.append((
|
77 |
+
self.tokenizer.decode(tokens[_segment[1]: length]),
|
78 |
+
None
|
79 |
+
))
|
80 |
+
else:
|
81 |
+
output = [(prompt, None)]
|
82 |
+
|
83 |
+
return output, token_evidence.tolist()
|
84 |
+
|
85 |
+
def steer_analysis(self, prompt, steer_dim, min_value=-3, max_value=3,
|
86 |
+
bins=7):
|
87 |
+
tokenized = self.tokenizer(prompt)
|
88 |
+
input_ids = torch.LongTensor(tokenized["input_ids"]).to(self.device)
|
89 |
+
input_ids = input_ids.expand(bins + 1, -1)
|
90 |
+
attention_mask = torch.LongTensor(tokenized["attention_mask"]).to(
|
91 |
+
self.device)
|
92 |
+
attention_mask = attention_mask.expand(bins + 1, -1)
|
93 |
+
steer_values = torch.zeros(bins+1, self.num_steers).to(self.device)
|
94 |
+
for bin_i in range(bins):
|
95 |
+
steer_values[bin_i, steer_dim] = (
|
96 |
+
min_value + (max_value - min_value) / (bins - 1) * bin_i
|
97 |
+
)
|
98 |
+
self.steer.set_value(steer_values)
|
99 |
+
with torch.no_grad():
|
100 |
+
output = self.model(
|
101 |
+
input_ids=input_ids,
|
102 |
+
attention_mask=attention_mask,
|
103 |
+
labels=input_ids)
|
104 |
+
length = input_ids.shape[1]
|
105 |
+
loss_token = F.cross_entropy(
|
106 |
+
output.logits[:, :-1].reshape((bins+1)*(length-1), -1),
|
107 |
+
input_ids[:, 1:].reshape(-1),
|
108 |
+
reduction="none"
|
109 |
+
)
|
110 |
+
loss_token = loss_token.reshape(bins + 1, length - 1)
|
111 |
+
loss = loss_token.mean(-1)[:-1]
|
112 |
+
dist = ((- loss + loss.mean()) * 100).softmax(0)
|
113 |
+
dist_list = list(zip(
|
114 |
+
[
|
115 |
+
min_value + (max_value - min_value) / (bins - 1) * bin_i
|
116 |
+
for bin_i in range(bins)
|
117 |
+
],
|
118 |
+
dist.tolist(),
|
119 |
+
))
|
120 |
+
best_guess = loss.argmin(0)
|
121 |
+
best_guess_value = min_value + \
|
122 |
+
(max_value - min_value) / (bins - 1) * best_guess.item()
|
123 |
+
|
124 |
+
token_evidence = (- loss_token[best_guess] + loss_token[-1]) * 10
|
125 |
+
token_evidence = [0] + token_evidence.tolist()
|
126 |
+
# tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
|
127 |
+
|
128 |
+
word_evidence_list = []
|
129 |
+
start = 0
|
130 |
+
n_tokens = len(input_ids[0])
|
131 |
+
for token_i in range(1, n_tokens+1):
|
132 |
+
span = self.tokenizer.decode(input_ids[0][start: token_i])
|
133 |
+
for _punc in punctuations:
|
134 |
+
if token_i == n_tokens or _punc in span:
|
135 |
+
new_span = self.tokenizer.decode(
|
136 |
+
input_ids[0][start: token_i-1]).strip()
|
137 |
+
if len(new_span) <= 1:
|
138 |
+
break
|
139 |
+
word_evidence_list.append((
|
140 |
+
new_span,
|
141 |
+
np.array(token_evidence[start: token_i-1]).mean()
|
142 |
+
))
|
143 |
+
start = token_i - 1
|
144 |
+
break
|
145 |
+
|
146 |
+
# token_evidence_list = list(zip(tokens, token_evidence))
|
147 |
+
return best_guess_value, dist_list, word_evidence_list
|
148 |
+
|
149 |
+
def generate(self, prompt, steer_values, min_length=20, max_length=100,
|
150 |
+
seed=None, num_beams=1, num_beam_groups=1, do_sample=True,
|
151 |
+
temperature=1, top_p=1):
|
152 |
+
'''
|
153 |
+
prompt: a string
|
154 |
+
steer_values
|
155 |
+
min_length: minimum generation length
|
156 |
+
max_length: maximum generation length
|
157 |
+
seed: seed for generation. None if not specified.
|
158 |
+
'''
|
159 |
+
if seed is not None:
|
160 |
+
set_seed(seed)
|
161 |
+
steer_values = torch.Tensor(steer_values).to(
|
162 |
+
self.device)
|
163 |
+
self.steer.set_value(steer_values[None])
|
164 |
+
with torch.no_grad():
|
165 |
+
text = self.generator(
|
166 |
+
prompt, num_beams=num_beams, num_beam_groups=num_beam_groups,
|
167 |
+
do_sample=do_sample, temperature=temperature, top_p=top_p,
|
168 |
+
min_length=min_length, max_length=max_length,
|
169 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
170 |
+
)
|
171 |
+
text = text[0]["generated_text"]
|
172 |
+
|
173 |
+
return text
|
lm_steer/models/model_embedding_tuning_gpt_neo.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
from .model_utils import Hack_no_grad
|
6 |
+
from lm_steer.utils import set_seed
|
7 |
+
|
8 |
+
|
9 |
+
class EmbeddingTuning_GPTNeoModel(nn.Module):
|
10 |
+
def __init__(self, model_name):
|
11 |
+
super().__init__()
|
12 |
+
self.generator = pipeline(
|
13 |
+
'text-generation',
|
14 |
+
model=model_name.replace("embedding_tuning-", ""))
|
15 |
+
self.tokenizer = self.generator.tokenizer
|
16 |
+
self.model = self.generator.model
|
17 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
18 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
19 |
+
|
20 |
+
self.model.transformer = Hack_no_grad(self.model.transformer)
|
21 |
+
|
22 |
+
def forward(self, input_ids, attention_mask, steer_values):
|
23 |
+
output = self.model(
|
24 |
+
input_ids=input_ids,
|
25 |
+
attention_mask=attention_mask,
|
26 |
+
labels=input_ids)
|
27 |
+
return output
|
28 |
+
|
29 |
+
def parameters(self):
|
30 |
+
return [self.model.lm_head.weight]
|
31 |
+
|
32 |
+
def state_dict(self):
|
33 |
+
return self.model.lm_head.state_dict()
|
34 |
+
|
35 |
+
def load_state_dict(self, state_dict):
|
36 |
+
self.model.lm_head.load_state_dict(state_dict)
|
37 |
+
|
38 |
+
def to_device(self, device):
|
39 |
+
self.generator.device = device
|
40 |
+
self.model.to(device)
|
41 |
+
self.device = device
|
42 |
+
|
43 |
+
def regularization_term(self):
|
44 |
+
return torch.tensor(0)
|
45 |
+
|
46 |
+
def generate(self, prompt, steer_values, min_length=20, max_length=100,
|
47 |
+
seed=None, num_beams=1, num_beam_groups=1, do_sample=True,
|
48 |
+
temperature=1, top_p=1):
|
49 |
+
if seed is not None:
|
50 |
+
set_seed(seed)
|
51 |
+
with torch.no_grad():
|
52 |
+
text = self.generator(
|
53 |
+
prompt, num_beams=num_beams, num_beam_groups=num_beam_groups,
|
54 |
+
do_sample=do_sample, temperature=temperature, top_p=top_p,
|
55 |
+
min_length=min_length, max_length=max_length,
|
56 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
57 |
+
)
|
58 |
+
text = text[0]["generated_text"]
|
59 |
+
return text
|
lm_steer/models/model_gpt_j.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from transformers import GPTJForCausalLM, AutoTokenizer
|
6 |
+
|
7 |
+
from .model_utils import Hack_no_grad, find_max_subspans
|
8 |
+
from .steers import Projected_Adaptor
|
9 |
+
from lm_steer.utils import set_seed
|
10 |
+
|
11 |
+
|
12 |
+
punctuations = [
|
13 |
+
'!', '"', '$', '%', '&', "'", '(', ')', '*', '+', ',', '-', '.',
|
14 |
+
# '/', '#',
|
15 |
+
':', ';', '<', '=', '>', '?', '@',
|
16 |
+
'[', '\\', ']', '^', '_', '`',
|
17 |
+
'{', '|', '}', '~',
|
18 |
+
'¨', '©', 'ª', '«', '¬', '®', '¯', '°', '±', '²', '³', '´', 'µ', '¶', '·',
|
19 |
+
'¸', '¹', 'º', '»', '¼', '½', '¾',
|
20 |
+
'\n', ' ',
|
21 |
+
]
|
22 |
+
|
23 |
+
|
24 |
+
class Switching_GPTJModel(nn.Module):
|
25 |
+
def __init__(self, model_name, adapted_component, adaptor_class,
|
26 |
+
num_steers, rank, epsilon, init_var, low_resource_mode):
|
27 |
+
super().__init__()
|
28 |
+
self.adapted_component = adapted_component
|
29 |
+
self.adaptor_class = adaptor_class
|
30 |
+
# self.generator = pipeline('text-generation', model=model_name)
|
31 |
+
# self.tokenizer = self.generator.tokenizer
|
32 |
+
# self.model = self.generator.model
|
33 |
+
if low_resource_mode:
|
34 |
+
print("using low_resource_mode and fp16")
|
35 |
+
self.model = GPTJForCausalLM.from_pretrained(
|
36 |
+
"EleutherAI/gpt-j-6B", revision="float16",
|
37 |
+
torch_dtype=torch.float16, low_cpu_mem_usage=True
|
38 |
+
)
|
39 |
+
else:
|
40 |
+
self.model = GPTJForCausalLM.from_pretrained(
|
41 |
+
"EleutherAI/gpt-j-6B",
|
42 |
+
)
|
43 |
+
self.tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
|
44 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
45 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
46 |
+
self.init_var = init_var
|
47 |
+
self.num_steers = num_steers
|
48 |
+
self.device = torch.device("cpu")
|
49 |
+
self.low_resource_mode = low_resource_mode
|
50 |
+
embed_dim = self.model.lm_head.weight.shape[1]
|
51 |
+
vocab_size = self.model.lm_head.weight.shape[0]
|
52 |
+
|
53 |
+
for _param in self.model.parameters():
|
54 |
+
_param.requires_grad_(False)
|
55 |
+
|
56 |
+
if adapted_component == "final_layer":
|
57 |
+
self.model.transformer = Hack_no_grad(self.model.transformer)
|
58 |
+
self.steer = Projected_Adaptor(
|
59 |
+
self.model.lm_head, adaptor_class, num_steers, embed_dim,
|
60 |
+
vocab_size, rank, epsilon, init_var, "output")
|
61 |
+
self.model.set_output_embeddings(self.steer)
|
62 |
+
elif adapted_component == "input_embedding":
|
63 |
+
self.steer = Projected_Adaptor(
|
64 |
+
self.model.transformer.wte, adaptor_class, num_steers,
|
65 |
+
embed_dim, vocab_size, rank, epsilon, init_var, "input")
|
66 |
+
self.model.transformer.set_input_embeddings(self.steer)
|
67 |
+
else:
|
68 |
+
raise NotImplementedError()
|
69 |
+
|
70 |
+
def forward(self, input_ids, attention_mask, steer_values):
|
71 |
+
self.steer.set_value(steer_values)
|
72 |
+
output = self.model(
|
73 |
+
input_ids=input_ids,
|
74 |
+
attention_mask=attention_mask,
|
75 |
+
labels=input_ids)
|
76 |
+
return output
|
77 |
+
|
78 |
+
def parameters(self):
|
79 |
+
return self.steer.parameters()
|
80 |
+
|
81 |
+
def state_dict(self):
|
82 |
+
return self.steer.state_dict()
|
83 |
+
|
84 |
+
def load_state_dict(self, state_dict):
|
85 |
+
self.steer.load_state_dict(state_dict)
|
86 |
+
|
87 |
+
def to_device(self, device):
|
88 |
+
# self.generator.device = device
|
89 |
+
self.model.to(device)
|
90 |
+
self.device = device
|
91 |
+
|
92 |
+
def regularization_term(self):
|
93 |
+
return self.steer.regularization_term()
|
94 |
+
|
95 |
+
def generate(self, prompt, steer_values, min_length=20, max_length=100,
|
96 |
+
seed=None, num_beams=1, num_beam_groups=1, do_sample=True,
|
97 |
+
temperature=1, top_p=1):
|
98 |
+
'''
|
99 |
+
prompt: a string
|
100 |
+
steer_values
|
101 |
+
min_length: minimum generation length
|
102 |
+
max_length: maximum generation length
|
103 |
+
seed: seed for generation. None if not specified.
|
104 |
+
'''
|
105 |
+
if seed is not None:
|
106 |
+
set_seed(seed)
|
107 |
+
steer_values = torch.Tensor(steer_values).to(
|
108 |
+
self.device)
|
109 |
+
if self.low_resource_mode:
|
110 |
+
fp16 = torch.float16
|
111 |
+
steer_values = steer_values.to(fp16)
|
112 |
+
self.steer.projector1.data = self.steer.projector1.to(fp16)
|
113 |
+
self.steer.projector2.data = self.steer.projector2.to(fp16)
|
114 |
+
self.steer.set_value(steer_values[None])
|
115 |
+
with torch.no_grad():
|
116 |
+
input_ids = self.tokenizer(
|
117 |
+
prompt, return_tensors="pt").input_ids.to(self.device)
|
118 |
+
gen_tokens = self.model.generate(
|
119 |
+
input_ids,
|
120 |
+
num_beams=num_beams, num_beam_groups=num_beam_groups,
|
121 |
+
do_sample=do_sample, temperature=temperature, top_p=top_p,
|
122 |
+
min_new_tokens=min_length, max_new_tokens=max_length,
|
123 |
+
pad_token_id=self.tokenizer.pad_token_id)
|
124 |
+
text = self.tokenizer.batch_decode(gen_tokens)[0]
|
125 |
+
|
126 |
+
# recovering
|
127 |
+
if self.low_resource_mode:
|
128 |
+
fp32 = torch.float32
|
129 |
+
self.steer.projector1.data = self.steer.projector1.to(fp32)
|
130 |
+
self.steer.projector2.data = self.steer.projector2.to(fp32)
|
131 |
+
return text
|
132 |
+
|
133 |
+
def generate_multiple(
|
134 |
+
self, prompts, steer_values, min_length=20, max_length=100,
|
135 |
+
seed=None):
|
136 |
+
'''
|
137 |
+
prompt: a string
|
138 |
+
steer_values
|
139 |
+
min_length: minimum generation length
|
140 |
+
max_length: maximum generation length
|
141 |
+
seed: seed for generation. None if not specified.
|
142 |
+
'''
|
143 |
+
if seed is not None:
|
144 |
+
set_seed(seed)
|
145 |
+
steer_values = torch.Tensor(steer_values).to(
|
146 |
+
self.device)
|
147 |
+
if self.low_resource_mode:
|
148 |
+
fp16 = torch.float16
|
149 |
+
steer_values = steer_values.to(fp16)
|
150 |
+
self.steer.projector1.data = self.steer.projector1.to(fp16)
|
151 |
+
self.steer.projector2.data = self.steer.projector2.to(fp16)
|
152 |
+
self.steer.set_value(steer_values)
|
153 |
+
with torch.no_grad():
|
154 |
+
input_ids = self.tokenizer(
|
155 |
+
prompts, return_tensors="pt").input_ids.to(self.device)
|
156 |
+
gen_tokens = self.model.generate(
|
157 |
+
input_ids,
|
158 |
+
do_sample=True,
|
159 |
+
min_new_tokens=min_length, max_new_tokens=max_length,
|
160 |
+
pad_token_id=self.tokenizer.pad_token_id)
|
161 |
+
text = self.tokenizer.batch_decode(gen_tokens)
|
162 |
+
|
163 |
+
# recovering
|
164 |
+
if self.low_resource_mode:
|
165 |
+
fp32 = torch.float32
|
166 |
+
self.steer.projector1.data = self.steer.projector1.to(fp32)
|
167 |
+
self.steer.projector2.data = self.steer.projector2.to(fp32)
|
168 |
+
return text
|
169 |
+
|
170 |
+
# def evidence_words(self, prompt, original_steer_values, max_segments=4,
|
171 |
+
# max_length=10):
|
172 |
+
# if isinstance(original_steer_values, list):
|
173 |
+
# original_steer_values = torch.Tensor(original_steer_values)
|
174 |
+
# if original_steer_values.abs().sum() <= 0.2:
|
175 |
+
# return [(prompt, None)]
|
176 |
+
# tokenized = self.tokenizer(prompt)
|
177 |
+
# input_ids = torch.LongTensor(tokenized["input_ids"]).to(self.device)
|
178 |
+
# input_ids = input_ids.expand(2, -1)
|
179 |
+
# attention_mask = torch.LongTensor(tokenized["attention_mask"]).to(
|
180 |
+
# self.device)
|
181 |
+
# attention_mask = attention_mask.expand(2, -1)
|
182 |
+
# steer_values = torch.zeros(2, self.num_steers).to(self.device)
|
183 |
+
# steer_values[0] = original_steer_values
|
184 |
+
# steer_values[1] = (-original_steer_values > 0) * 2 - 1
|
185 |
+
# if self.low_resource_mode:
|
186 |
+
# fp16 = torch.float16
|
187 |
+
# steer_values = steer_values.to(fp16)
|
188 |
+
# self.steer.projector1.data = self.steer.projector1.to(fp16)
|
189 |
+
# self.steer.projector2.data = self.steer.projector2.to(fp16)
|
190 |
+
# self.steer.set_value(steer_values)
|
191 |
+
# with torch.no_grad():
|
192 |
+
# output = self.model(
|
193 |
+
# input_ids=input_ids,
|
194 |
+
# attention_mask=attention_mask,
|
195 |
+
# labels=input_ids)
|
196 |
+
# length = input_ids.shape[1]
|
197 |
+
# loss_token = F.cross_entropy(
|
198 |
+
# output.logits[:, :-1].reshape((2)*(length-1), -1),
|
199 |
+
# input_ids[:, 1:].reshape(-1),
|
200 |
+
# reduction="none"
|
201 |
+
# )
|
202 |
+
# loss_token = loss_token.reshape(2, length - 1)
|
203 |
+
|
204 |
+
def evidence_words(self, prompt, original_steer_values,
|
205 |
+
truncation_length=1024, max_segments=4, max_length=10):
|
206 |
+
if isinstance(original_steer_values, list):
|
207 |
+
original_steer_values = torch.Tensor(original_steer_values)
|
208 |
+
if original_steer_values.abs().sum() <= 0.2:
|
209 |
+
return [(prompt, None)]
|
210 |
+
tokenized = self.tokenizer(
|
211 |
+
prompt, return_tensors="pt", max_length=truncation_length, truncation=True)
|
212 |
+
input_ids = torch.LongTensor(tokenized["input_ids"]).to(self.device)
|
213 |
+
input_ids = input_ids.expand(2, -1)
|
214 |
+
attention_mask = torch.LongTensor(tokenized["attention_mask"]).to(
|
215 |
+
self.device)
|
216 |
+
attention_mask = attention_mask.expand(2, -1)
|
217 |
+
steer_values = torch.zeros(2, self.num_steers).to(self.device)
|
218 |
+
steer_values[0] = original_steer_values
|
219 |
+
steer_values[1] = (-original_steer_values > 0) * 2 - 1
|
220 |
+
if self.low_resource_mode:
|
221 |
+
fp16 = torch.float16
|
222 |
+
steer_values = steer_values.to(fp16)
|
223 |
+
self.steer.projector1.data = self.steer.projector1.to(fp16)
|
224 |
+
self.steer.projector2.data = self.steer.projector2.to(fp16)
|
225 |
+
self.steer.set_value(steer_values)
|
226 |
+
with torch.no_grad():
|
227 |
+
output = self.model(
|
228 |
+
input_ids=input_ids,
|
229 |
+
attention_mask=attention_mask,
|
230 |
+
labels=input_ids)
|
231 |
+
length = input_ids.shape[1]
|
232 |
+
loss_token = F.cross_entropy(
|
233 |
+
output.logits[:, :-1].reshape((2)*(length-1), -1),
|
234 |
+
input_ids[:, 1:].reshape(-1),
|
235 |
+
reduction="none"
|
236 |
+
)
|
237 |
+
loss_token = loss_token.reshape(2, length - 1)
|
238 |
+
|
239 |
+
token_evidence = (- loss_token[0] + loss_token[1])
|
240 |
+
tokens = input_ids[0]
|
241 |
+
evidence_segments = find_max_subspans(
|
242 |
+
token_evidence.cpu().numpy().tolist(), max_segments, max_length)[0]
|
243 |
+
evidence_segments = [
|
244 |
+
(_seg[0]+1, _seg[1]+1) for _seg in evidence_segments]
|
245 |
+
start = 0
|
246 |
+
output = []
|
247 |
+
color = (
|
248 |
+
"gray" if original_steer_values.shape[0] > 1
|
249 |
+
else "red" if original_steer_values[0] > 0
|
250 |
+
else "blue"
|
251 |
+
)
|
252 |
+
if len(evidence_segments) > 0:
|
253 |
+
for _segment in evidence_segments:
|
254 |
+
if _segment[0] > start:
|
255 |
+
output.append((
|
256 |
+
self.tokenizer.decode(tokens[start: _segment[0]]),
|
257 |
+
None
|
258 |
+
))
|
259 |
+
output.append((
|
260 |
+
self.tokenizer.decode(tokens[_segment[0]: _segment[1]]),
|
261 |
+
color
|
262 |
+
))
|
263 |
+
start = _segment[1]
|
264 |
+
length = tokens.shape[-1]
|
265 |
+
if _segment[1] < length:
|
266 |
+
output.append((
|
267 |
+
self.tokenizer.decode(tokens[_segment[1]: length]),
|
268 |
+
None
|
269 |
+
))
|
270 |
+
else:
|
271 |
+
output = [(prompt, None)]
|
272 |
+
|
273 |
+
if self.low_resource_mode:
|
274 |
+
fp32 = torch.float32
|
275 |
+
self.steer.projector1.data = self.steer.projector1.to(fp32)
|
276 |
+
self.steer.projector2.data = self.steer.projector2.to(fp32)
|
277 |
+
return output
|
278 |
+
|
279 |
+
def steer_analysis(self, prompt, steer_dim, min_value=-3, max_value=3,
|
280 |
+
bins=7, truncation_length=1024):
|
281 |
+
tokenized = self.tokenizer(
|
282 |
+
prompt, return_tensors="pt",
|
283 |
+
max_length=truncation_length,
|
284 |
+
truncation=True)
|
285 |
+
input_ids = torch.LongTensor(tokenized["input_ids"]).to(self.device)
|
286 |
+
input_ids = input_ids.expand(bins + 1, -1)
|
287 |
+
attention_mask = torch.LongTensor(tokenized["attention_mask"]).to(
|
288 |
+
self.device)
|
289 |
+
attention_mask = attention_mask.expand(bins + 1, -1)
|
290 |
+
steer_values = torch.zeros(bins+1, self.num_steers).to(self.device)
|
291 |
+
for bin_i in range(bins):
|
292 |
+
steer_values[bin_i, steer_dim] = (
|
293 |
+
min_value + (max_value - min_value) / (bins - 1) * bin_i
|
294 |
+
)
|
295 |
+
if self.low_resource_mode:
|
296 |
+
fp16 = torch.float16
|
297 |
+
steer_values = steer_values.to(fp16)
|
298 |
+
self.steer.projector1.data = self.steer.projector1.to(fp16)
|
299 |
+
self.steer.projector2.data = self.steer.projector2.to(fp16)
|
300 |
+
self.steer.set_value(steer_values)
|
301 |
+
with torch.no_grad():
|
302 |
+
output = self.model(
|
303 |
+
input_ids=input_ids,
|
304 |
+
attention_mask=attention_mask,
|
305 |
+
labels=input_ids)
|
306 |
+
length = input_ids.shape[1]
|
307 |
+
loss_token = F.cross_entropy(
|
308 |
+
output.logits[:, :-1].reshape((bins+1)*(length-1), -1),
|
309 |
+
input_ids[:, 1:].reshape(-1),
|
310 |
+
reduction="none"
|
311 |
+
)
|
312 |
+
loss_token = loss_token.reshape(bins + 1, length - 1)
|
313 |
+
loss = loss_token.mean(-1)[:-1]
|
314 |
+
dist = ((- loss + loss.mean()) * 100).softmax(0)
|
315 |
+
dist_list = list(zip(
|
316 |
+
[
|
317 |
+
min_value + (max_value - min_value) / (bins - 1) * bin_i
|
318 |
+
for bin_i in range(bins)
|
319 |
+
],
|
320 |
+
dist.tolist(),
|
321 |
+
))
|
322 |
+
best_guess = loss.argmin(0)
|
323 |
+
best_guess_value = min_value + \
|
324 |
+
(max_value - min_value) / (bins - 1) * best_guess.item()
|
325 |
+
|
326 |
+
token_evidence = self.evidence_words(
|
327 |
+
prompt, steer_values[best_guess],
|
328 |
+
)
|
329 |
+
|
330 |
+
if self.low_resource_mode:
|
331 |
+
fp32 = torch.float32
|
332 |
+
self.steer.projector1.data = self.steer.projector1.to(fp32)
|
333 |
+
return best_guess_value, dist_list, token_evidence
|
lm_steer/models/model_gpt_neo.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
from .model_utils import Hack_no_grad
|
5 |
+
from .steers import Projected_Adaptor
|
6 |
+
from .model_base import LMSteerBase
|
7 |
+
|
8 |
+
|
9 |
+
class Switching_GPTNeoModel(LMSteerBase):
|
10 |
+
def __init__(self, model_name, adapted_component, adaptor_class,
|
11 |
+
num_steers, rank, epsilon, init_var,
|
12 |
+
low_resource_mode):
|
13 |
+
super().__init__()
|
14 |
+
self.adapted_component = adapted_component
|
15 |
+
self.generator = pipeline('text-generation', model=model_name)
|
16 |
+
self.tokenizer = self.generator.tokenizer
|
17 |
+
self.model = self.generator.model
|
18 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
19 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
20 |
+
self.init_var = init_var
|
21 |
+
self.num_steers = num_steers
|
22 |
+
self.device = torch.device("cpu")
|
23 |
+
embed_dim = self.model.lm_head.weight.shape[1]
|
24 |
+
vocab_size = self.model.lm_head.weight.shape[0]
|
25 |
+
|
26 |
+
for _param in self.model.parameters():
|
27 |
+
_param.requires_grad_(False)
|
28 |
+
|
29 |
+
if adapted_component == "final_layer":
|
30 |
+
self.model.transformer = Hack_no_grad(self.model.transformer)
|
31 |
+
self.steer = Projected_Adaptor(
|
32 |
+
self.model.lm_head, adaptor_class, num_steers, embed_dim,
|
33 |
+
vocab_size, rank, epsilon, init_var, "output")
|
34 |
+
self.model.set_output_embeddings(self.steer)
|
35 |
+
elif adapted_component == "input_embedding":
|
36 |
+
self.steer = Projected_Adaptor(
|
37 |
+
self.model.transformer.wte, adaptor_class, num_steers,
|
38 |
+
embed_dim, vocab_size, rank, epsilon, init_var, "input")
|
39 |
+
self.model.transformer.set_input_embeddings(self.steer)
|
40 |
+
else:
|
41 |
+
raise NotImplementedError()
|
42 |
+
|
43 |
+
def forward(self, input_ids, attention_mask, steer_values):
|
44 |
+
self.steer.set_value(steer_values)
|
45 |
+
output = self.model(
|
46 |
+
input_ids=input_ids,
|
47 |
+
attention_mask=attention_mask,
|
48 |
+
labels=input_ids)
|
49 |
+
return output
|
50 |
+
|
51 |
+
def parameters(self):
|
52 |
+
return self.steer.parameters()
|
53 |
+
|
54 |
+
def state_dict(self):
|
55 |
+
return self.steer.state_dict()
|
56 |
+
|
57 |
+
def load_state_dict(self, state_dict):
|
58 |
+
self.steer.load_state_dict(state_dict)
|
59 |
+
|
60 |
+
def to_device(self, device):
|
61 |
+
self.generator.device = device
|
62 |
+
self.model.to(device)
|
63 |
+
self.device = device
|
64 |
+
|
65 |
+
def regularization_term(self):
|
66 |
+
return self.steer.regularization_term()
|
lm_steer/models/model_gpt_neox.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import GPTNeoXForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
from .model_utils import Hack_no_grad
|
5 |
+
from .steers import Projected_Adaptor
|
6 |
+
from .model_base import LMSteerBase
|
7 |
+
from lm_steer.utils import set_seed
|
8 |
+
|
9 |
+
|
10 |
+
class Switching_GPTNeoXModel(LMSteerBase):
|
11 |
+
def __init__(self, model_name, adapted_component, adaptor_class,
|
12 |
+
num_steers, rank, epsilon, init_var,
|
13 |
+
low_resource_mode):
|
14 |
+
super().__init__()
|
15 |
+
self.adapted_component = adapted_component
|
16 |
+
if low_resource_mode:
|
17 |
+
self.model = GPTNeoXForCausalLM.from_pretrained(
|
18 |
+
model_name,
|
19 |
+
torch_dtype=torch.float16, low_cpu_mem_usage=True
|
20 |
+
)
|
21 |
+
else:
|
22 |
+
self.model = GPTNeoXForCausalLM.from_pretrained(model_name)
|
23 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
25 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
26 |
+
self.init_var = init_var
|
27 |
+
self.num_steers = num_steers
|
28 |
+
self.device = torch.device("cpu")
|
29 |
+
embed_dim = self.model.embed_out.weight.shape[1]
|
30 |
+
vocab_size = self.model.embed_out.weight.shape[0]
|
31 |
+
self.low_resource_mode = low_resource_mode
|
32 |
+
|
33 |
+
for _param in self.model.parameters():
|
34 |
+
_param.requires_grad_(False)
|
35 |
+
|
36 |
+
if adapted_component == "final_layer":
|
37 |
+
self.model.gpt_neox = Hack_no_grad(self.model.gpt_neox)
|
38 |
+
self.steer = Projected_Adaptor(
|
39 |
+
self.model.embed_out, adaptor_class, num_steers, embed_dim,
|
40 |
+
vocab_size, rank, epsilon, init_var, "output")
|
41 |
+
self.model.set_output_embeddings(self.steer)
|
42 |
+
else:
|
43 |
+
raise NotImplementedError()
|
44 |
+
|
45 |
+
def forward(self, input_ids, attention_mask, steer_values):
|
46 |
+
self.steer.set_value(steer_values)
|
47 |
+
output = self.model(
|
48 |
+
input_ids=input_ids,
|
49 |
+
attention_mask=attention_mask,
|
50 |
+
labels=input_ids)
|
51 |
+
return output
|
52 |
+
|
53 |
+
def parameters(self):
|
54 |
+
return self.steer.parameters()
|
55 |
+
|
56 |
+
def state_dict(self):
|
57 |
+
return self.steer.state_dict()
|
58 |
+
|
59 |
+
def load_state_dict(self, state_dict):
|
60 |
+
self.steer.load_state_dict(state_dict)
|
61 |
+
|
62 |
+
def to_device(self, device):
|
63 |
+
self.model.to(device)
|
64 |
+
self.device = device
|
65 |
+
|
66 |
+
def regularization_term(self):
|
67 |
+
return self.steer.regularization_term()
|
68 |
+
|
69 |
+
def generate(self, prompt, steer_values, min_length=20, max_length=100,
|
70 |
+
seed=None, num_beams=1, num_beam_groups=1, do_sample=True,
|
71 |
+
temperature=1, top_p=1):
|
72 |
+
'''
|
73 |
+
prompt: a string
|
74 |
+
steer_values
|
75 |
+
min_length: minimum generation length
|
76 |
+
max_length: maximum generation length
|
77 |
+
seed: seed for generation. None if not specified.
|
78 |
+
'''
|
79 |
+
if seed is not None:
|
80 |
+
set_seed(seed)
|
81 |
+
steer_values = torch.Tensor(steer_values).to(
|
82 |
+
self.device)
|
83 |
+
if self.low_resource_mode:
|
84 |
+
fp16 = torch.float16
|
85 |
+
steer_values = steer_values.to(fp16)
|
86 |
+
self.steer.projector1.data = self.steer.projector1.to(fp16)
|
87 |
+
self.steer.projector2.data = self.steer.projector2.to(fp16)
|
88 |
+
self.steer.set_value(steer_values[None])
|
89 |
+
with torch.no_grad():
|
90 |
+
input_ids = self.tokenizer(
|
91 |
+
prompt, return_tensors="pt").input_ids.to(self.device)
|
92 |
+
gen_tokens = self.model.generate(
|
93 |
+
input_ids,
|
94 |
+
num_beams=num_beams, num_beam_groups=num_beam_groups,
|
95 |
+
do_sample=do_sample, temperature=temperature, top_p=top_p,
|
96 |
+
min_length=min_length, max_length=max_length,
|
97 |
+
pad_token_id=self.tokenizer.pad_token_id)
|
98 |
+
text = self.tokenizer.batch_decode(gen_tokens)[0]
|
99 |
+
|
100 |
+
# recovering
|
101 |
+
if self.low_resource_mode:
|
102 |
+
fp32 = torch.float32
|
103 |
+
self.steer.projector1.data = self.steer.projector1.to(fp32)
|
104 |
+
self.steer.projector2.data = self.steer.projector2.to(fp32)
|
105 |
+
return text
|
lm_steer/models/model_lora_gpt_neo.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import pipeline
|
4 |
+
from peft import LoraConfig, get_peft_model
|
5 |
+
|
6 |
+
from lm_steer.utils import set_seed
|
7 |
+
|
8 |
+
|
9 |
+
class LORA_GPTNeoModel(nn.Module):
|
10 |
+
def __init__(self, model_name, rank, epsilon):
|
11 |
+
super().__init__()
|
12 |
+
self.generator = pipeline('text-generation',
|
13 |
+
model=model_name.replace("lora-", ""))
|
14 |
+
self.tokenizer = self.generator.tokenizer
|
15 |
+
model = self.generator.model
|
16 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
17 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
18 |
+
|
19 |
+
config = LoraConfig(
|
20 |
+
r=rank,
|
21 |
+
lora_alpha=epsilon,
|
22 |
+
target_modules=["c_attn", "c_proj", "c_fc"],
|
23 |
+
lora_dropout=0.1,
|
24 |
+
bias="lora_only",
|
25 |
+
modules_to_save=[],
|
26 |
+
)
|
27 |
+
self.model = get_peft_model(model, config)
|
28 |
+
self.generator.model = self.model
|
29 |
+
self.model.print_trainable_parameters()
|
30 |
+
|
31 |
+
def forward(self, input_ids, attention_mask, steer_values):
|
32 |
+
output = self.model(
|
33 |
+
input_ids=input_ids,
|
34 |
+
attention_mask=attention_mask,
|
35 |
+
labels=input_ids)
|
36 |
+
return output
|
37 |
+
|
38 |
+
def to_device(self, device):
|
39 |
+
self.generator.device = device
|
40 |
+
self.model.to(device)
|
41 |
+
self.device = device
|
42 |
+
|
43 |
+
def regularization_term(self):
|
44 |
+
return torch.tensor(0)
|
45 |
+
|
46 |
+
def generate(self, prompt, steer_values, min_length=20, max_length=100,
|
47 |
+
seed=None, num_beams=1, num_beam_groups=1, do_sample=True,
|
48 |
+
temperature=1, top_p=1):
|
49 |
+
if seed is not None:
|
50 |
+
set_seed(seed)
|
51 |
+
with torch.no_grad():
|
52 |
+
text = self.generator(
|
53 |
+
prompt, num_beams=num_beams, num_beam_groups=num_beam_groups,
|
54 |
+
do_sample=do_sample, temperature=temperature, top_p=top_p,
|
55 |
+
min_length=min_length, max_length=max_length,
|
56 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
57 |
+
)
|
58 |
+
text = text[0]["generated_text"]
|
59 |
+
return text
|
lm_steer/models/model_utils.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
class Hack_no_grad(nn.Module):
|
7 |
+
def __init__(self, module):
|
8 |
+
super().__init__()
|
9 |
+
self.module = module
|
10 |
+
|
11 |
+
def forward(self, *inputs, **kwargs):
|
12 |
+
with torch.no_grad():
|
13 |
+
return self.module(*inputs, **kwargs)
|
14 |
+
|
15 |
+
|
16 |
+
def find_max_subspans(sequence, n_spans, max_length):
|
17 |
+
length = len(sequence)
|
18 |
+
inner_scores = np.zeros((length, n_spans + 1, max_length + 1, 2))
|
19 |
+
trace = np.zeros((length, n_spans + 1, max_length + 1, 2, 3), dtype=int)
|
20 |
+
# trace[:, n_spans, max_length, 0] = (n_spans, max_length, 0)
|
21 |
+
inner_scores[-1, :, :, 1] = -1e5
|
22 |
+
for _i in range(length):
|
23 |
+
for _j in range(n_spans+1):
|
24 |
+
for _k in range(max_length+1):
|
25 |
+
trace[_i, _j, _k, 0] = (_j, max_length, 0)
|
26 |
+
|
27 |
+
for _i in range(length):
|
28 |
+
for _j in range(n_spans):
|
29 |
+
for _k in range(max_length+1):
|
30 |
+
inner_scores[_i, _j, _k, 0], trace[_i, _j, _k, 0] = (
|
31 |
+
inner_scores[_i-1, _j, max_length, 0],
|
32 |
+
(_j, max_length, 0)
|
33 |
+
)
|
34 |
+
max_taken = inner_scores[_i-1, _j, :, 1].max()
|
35 |
+
if max_taken > inner_scores[_i, _j, _k, 0]:
|
36 |
+
inner_scores[_i, _j, _k, 0] = max_taken
|
37 |
+
trace[_i, _j, _k, 0] = (
|
38 |
+
_j, inner_scores[_i-1, _j, :, 1].argmax(), 1)
|
39 |
+
|
40 |
+
if _k < max_length:
|
41 |
+
inner_scores[_i, _j, _k, 1], trace[_i, _j, _k, 1] = (
|
42 |
+
(
|
43 |
+
inner_scores[_i-1, _j, _k+1, 1] + sequence[_i],
|
44 |
+
(_j, _k+1, 1)
|
45 |
+
)
|
46 |
+
if (inner_scores[_i-1, _j, _k+1, 1] >
|
47 |
+
inner_scores[_i-1, _j+1, max_length, 0])
|
48 |
+
else (
|
49 |
+
inner_scores[_i-1, _j+1, max_length, 0] +
|
50 |
+
sequence[_i],
|
51 |
+
(_j+1, max_length, 0)
|
52 |
+
)
|
53 |
+
)
|
54 |
+
|
55 |
+
max_score = 0
|
56 |
+
argmax = (0, 0, 0)
|
57 |
+
for _j in reversed(range(n_spans + 1)):
|
58 |
+
for _k in reversed(range(max_length)):
|
59 |
+
if inner_scores[-1, _j, _k, 0] > max_score:
|
60 |
+
max_score = inner_scores[-1, _j, _k, 0]
|
61 |
+
argmax = (_j, _k, 0)
|
62 |
+
if inner_scores[-1, _j, _k, 1] > max_score:
|
63 |
+
max_score = inner_scores[-1, _j, _k, 1]
|
64 |
+
argmax = (_j, _k, 1)
|
65 |
+
|
66 |
+
trace_back = argmax
|
67 |
+
tags = []
|
68 |
+
for _i in reversed(range(length)):
|
69 |
+
tags.append(trace_back[2])
|
70 |
+
trace_back = trace[_i, trace_back[0], trace_back[1], trace_back[2]]
|
71 |
+
|
72 |
+
tags.reverse()
|
73 |
+
segments = []
|
74 |
+
start = None
|
75 |
+
for _i in range(length + 1):
|
76 |
+
if _i < length and tags[_i] == 1 and start is None:
|
77 |
+
start = _i
|
78 |
+
elif (_i == length or tags[_i] == 0) and start is not None:
|
79 |
+
segments.append((start, _i))
|
80 |
+
start = None
|
81 |
+
return segments, max_score, tags # , inner_scores, trace
|
lm_steer/models/steers.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class Projected_Adaptor(nn.Module):
|
6 |
+
def __init__(self, lm_head, adaptor_class, num_steers, embed_dim,
|
7 |
+
vocab_size, rank, epsilon, init_var, position="output"):
|
8 |
+
super().__init__()
|
9 |
+
assert rank > 0
|
10 |
+
if adaptor_class == "multiply":
|
11 |
+
self.projector1 = nn.Parameter(torch.randn(
|
12 |
+
num_steers, embed_dim, rank
|
13 |
+
) * init_var)
|
14 |
+
self.projector2 = nn.Parameter(torch.randn(
|
15 |
+
num_steers, embed_dim, rank
|
16 |
+
) * init_var)
|
17 |
+
elif adaptor_class == "add":
|
18 |
+
self.add_vec = nn.Parameter(torch.randn(
|
19 |
+
num_steers, embed_dim
|
20 |
+
))
|
21 |
+
elif adaptor_class == "offset":
|
22 |
+
self.offset_vec = nn.Parameter(torch.randn(
|
23 |
+
num_steers, vocab_size
|
24 |
+
))
|
25 |
+
else:
|
26 |
+
raise NotImplementedError()
|
27 |
+
|
28 |
+
self.adaptor_class = adaptor_class
|
29 |
+
self.rank = rank
|
30 |
+
self.lm_head = lm_head
|
31 |
+
self.epsilon = epsilon
|
32 |
+
self.position = position
|
33 |
+
self.num_steers = num_steers
|
34 |
+
self.init_var = init_var
|
35 |
+
self.steer_values = torch.zeros(num_steers)
|
36 |
+
|
37 |
+
def set_value(self, steer_values):
|
38 |
+
self.steer_values = steer_values
|
39 |
+
|
40 |
+
def forward(self, state):
|
41 |
+
if self.steer_values.abs().sum() == 0:
|
42 |
+
return state.matmul(
|
43 |
+
self.lm_head.weight.detach().transpose(0, 1))
|
44 |
+
if self.adaptor_class == "multiply":
|
45 |
+
delta = state[:, None].matmul(self.projector1[None]) *\
|
46 |
+
self.steer_values[:, :, None, None]
|
47 |
+
delta = delta.matmul(
|
48 |
+
self.projector2.transpose(1, 2)[None]).sum(1)
|
49 |
+
projected_state = state + self.epsilon * delta
|
50 |
+
logits = projected_state.matmul(
|
51 |
+
self.lm_head.weight.detach().transpose(0, 1))
|
52 |
+
elif self.adaptor_class == "add":
|
53 |
+
add_values = self.steer_values.matmul(self.add_vec)
|
54 |
+
projected_state = state + self.epsilon * add_values[:, None]
|
55 |
+
logits = projected_state.matmul(
|
56 |
+
self.lm_head.weight.detach().transpose(0, 1))
|
57 |
+
elif self.adaptor_class == "offset":
|
58 |
+
offset_values = self.steer_values.matmul(self.offset_vec)
|
59 |
+
logits = state.matmul(
|
60 |
+
self.lm_head.weight.detach().transpose(0, 1))
|
61 |
+
logits = logits + self.epsilon * offset_values[:, None]
|
62 |
+
return logits
|
63 |
+
|
64 |
+
def regularization_term(self):
|
65 |
+
if self.adaptor_class == "multiply":
|
66 |
+
return self.projector1.pow(2).sum() + self.projector2.pow(2).sum()
|
67 |
+
elif self.adaptor_class == "add":
|
68 |
+
return self.add_vec.pow(2).sum()
|
69 |
+
elif self.adaptor_class == "offset":
|
70 |
+
return self.offset_vec.pow(2).sum()
|
71 |
+
|
72 |
+
def parameters(self):
|
73 |
+
if self.adaptor_class == "multiply":
|
74 |
+
return [self.projector1, self.projector2]
|
75 |
+
elif self.adaptor_class == "add":
|
76 |
+
return [self.add_vec]
|
77 |
+
elif self.adaptor_class == "offset":
|
78 |
+
return [self.offset_vec]
|
79 |
+
|
80 |
+
def state_dict(self):
|
81 |
+
if self.adaptor_class == "multiply":
|
82 |
+
return {"projector1": self.projector1,
|
83 |
+
"projector2": self.projector2}
|
84 |
+
elif self.adaptor_class == "add":
|
85 |
+
return {"add_vec": self.add_vec}
|
86 |
+
elif self.adaptor_class == "offset":
|
87 |
+
return {"offset_vec": self.offset_vec}
|
88 |
+
|
89 |
+
def load_state_dict(self, state_dict):
|
90 |
+
if self.adaptor_class == "multiply":
|
91 |
+
self.projector1.data = state_dict["projector1"]
|
92 |
+
self.projector2.data = state_dict["projector2"]
|
93 |
+
elif self.adaptor_class == "add":
|
94 |
+
self.add_vec.data = state_dict["add_vec"]
|
95 |
+
elif self.adaptor_class == "offset":
|
96 |
+
self.offset_vec.data = state_dict["offset_vec"]
|
lm_steer/utils.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
def set_seed(seed):
|
7 |
+
if seed is None:
|
8 |
+
return
|
9 |
+
torch.manual_seed(seed)
|
10 |
+
torch.cuda.manual_seed_all(seed)
|
11 |
+
np.random.seed(seed)
|
12 |
+
random.seed(seed)
|
13 |
+
|
14 |
+
|
15 |
+
class RunningMean:
|
16 |
+
def __init__(self, gamma):
|
17 |
+
self.gamma = gamma
|
18 |
+
self.count = 0
|
19 |
+
self._value = None
|
20 |
+
|
21 |
+
def update(self, value):
|
22 |
+
value = value.detach().cpu()
|
23 |
+
if value.ndim == 0:
|
24 |
+
self._update(value)
|
25 |
+
else:
|
26 |
+
for _v in value:
|
27 |
+
self._update(_v)
|
28 |
+
|
29 |
+
def _update(self, value):
|
30 |
+
self.count += 1
|
31 |
+
if self._value is None:
|
32 |
+
self._value = value
|
33 |
+
else:
|
34 |
+
w1 = self.gamma * (1 - self.gamma ** (self.count - 1))
|
35 |
+
w2 = (1 - self.gamma)
|
36 |
+
wt = w1 + w2
|
37 |
+
w1 = w1 / wt
|
38 |
+
w2 = w2 / wt
|
39 |
+
self._value = w1 * self._value + w2 * value
|
40 |
+
|
41 |
+
@property
|
42 |
+
def value(self):
|
43 |
+
if self._value is None:
|
44 |
+
return 0
|
45 |
+
return self._value * 1
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
datasets
|
4 |
+
numpy
|
5 |
+
pandas
|