NursNurs commited on
Commit
3f65914
·
1 Parent(s): 22e09d4

Changed how matching keywords in results show + removed full description from results

Browse files
Files changed (1) hide show
  1. app.py +17 -6
app.py CHANGED
@@ -59,7 +59,8 @@ def compute_cos_sim(input):
59
  # for el in st.session_state.preferences_2:
60
  # query += el
61
 
62
- st.write("Your query for cos sim calculation is", query)
 
63
  embedded_query = get_bert_embeddings(query, model, tokenizer)
64
  embedded_query = embedded_query.numpy()
65
  top_similar = np.array([])
@@ -180,8 +181,8 @@ def promote_places():
180
  a function that takes most common words, checks if descriptions fit them, increases their weight if they do
181
  '''
182
  #punish the weight of places that don't fit restrictions
183
- st.write("Here are the most common preferences you provided:")
184
- st.write(st.session_state.fixed_preferences)
185
 
186
  preferences = st.session_state.fixed_preferences
187
 
@@ -259,6 +260,9 @@ if 'precalculated_df' not in st.session_state:
259
 
260
  if 'results' not in st.session_state:
261
  st.session_state.results = {}
 
 
 
262
 
263
  # Configure Streamlit page and state
264
  st.title("GoTogether!")
@@ -417,6 +421,7 @@ if submit or (not st.session_state.precalculated_df.empty):
417
  query = get_combined_preferences(st.session_state.preferences_1, st.session_state.preferences_2)
418
  #sort places based on restrictions
419
  st.session_state.precalculated_df = filter_places(st.session_state.restrictions)
 
420
  #sort places by elevating preferrences
421
 
422
  st.session_state.precalculated_df = promote_places()
@@ -452,8 +457,13 @@ if submit or (not st.session_state.precalculated_df.empty):
452
 
453
  descr = st.session_state.precalculated_df.loc[condition, 'Strings'].values[0]
454
  for word in set([word.lower() for word in descr.split()]):
455
- if word in st.session_state.fixed_preferences:
456
  st.markdown(f'✅{word.capitalize()}')
 
 
 
 
 
457
 
458
 
459
  #Restaurant category
@@ -478,7 +488,7 @@ if submit or (not st.session_state.precalculated_df.empty):
478
  url = st.session_state.precalculated_df.loc[condition, 'URL'].values[0]
479
  st.write(f"_Check on the_ [_map_]({url})")
480
 
481
- st.write(descr)
482
 
483
  i+=1
484
 
@@ -487,7 +497,7 @@ if submit or (not st.session_state.precalculated_df.empty):
487
 
488
 
489
  st.session_state.preferences_1, st.session_state.preferences_2 = [], []
490
- st.session_state.restrictions = []
491
 
492
  stop = st.button("New search!", type='primary', key=500)
493
  if stop:
@@ -500,4 +510,5 @@ if stop:
500
  st.session_state.precalculated_df = pd.DataFrame()
501
  st.session_state.results = {}
502
  st.session_state.fixed_preferences = []
 
503
 
 
59
  # for el in st.session_state.preferences_2:
60
  # query += el
61
 
62
+ # st.write("Your query is", query)
63
+ # st.write("Your restrictions are", st.session_state.restrictions)
64
  embedded_query = get_bert_embeddings(query, model, tokenizer)
65
  embedded_query = embedded_query.numpy()
66
  top_similar = np.array([])
 
181
  a function that takes most common words, checks if descriptions fit them, increases their weight if they do
182
  '''
183
  #punish the weight of places that don't fit restrictions
184
+ # st.write("Here are the most common preferences you provided:")
185
+ # st.write(st.session_state.fixed_preferences)
186
 
187
  preferences = st.session_state.fixed_preferences
188
 
 
260
 
261
  if 'results' not in st.session_state:
262
  st.session_state.results = {}
263
+
264
+ if 'fixed_restrictions' not in st.session_state:
265
+ st.session_state.fixed_restrictions = []
266
 
267
  # Configure Streamlit page and state
268
  st.title("GoTogether!")
 
421
  query = get_combined_preferences(st.session_state.preferences_1, st.session_state.preferences_2)
422
  #sort places based on restrictions
423
  st.session_state.precalculated_df = filter_places(st.session_state.restrictions)
424
+ st.session_state.fixed_restrictions = st.session_state.restrictions
425
  #sort places by elevating preferrences
426
 
427
  st.session_state.precalculated_df = promote_places()
 
457
 
458
  descr = st.session_state.precalculated_df.loc[condition, 'Strings'].values[0]
459
  for word in set([word.lower() for word in descr.split()]):
460
+ if word in [el.lower() for el in st.session_state.fixed_preferences]:
461
  st.markdown(f'✅{word.capitalize()}')
462
+ if word in [el.lower() for el in st.session_state.fixed_restrictions]:
463
+ if word == 'kids':
464
+ st.markdown(f'✅Good for kids')
465
+ else:
466
+ st.markdown(f'✅{word.capitalize()}')
467
 
468
 
469
  #Restaurant category
 
488
  url = st.session_state.precalculated_df.loc[condition, 'URL'].values[0]
489
  st.write(f"_Check on the_ [_map_]({url})")
490
 
491
+ # st.write(descr)
492
 
493
  i+=1
494
 
 
497
 
498
 
499
  st.session_state.preferences_1, st.session_state.preferences_2 = [], []
500
+ # st.session_state.restrictions = []
501
 
502
  stop = st.button("New search!", type='primary', key=500)
503
  if stop:
 
510
  st.session_state.precalculated_df = pd.DataFrame()
511
  st.session_state.results = {}
512
  st.session_state.fixed_preferences = []
513
+
514