Chatbot_ChatGLM4 / trans_cli_demo.py
GrahamY's picture
Upload folder using huggingface_hub
596ba9a verified
"""
This script creates a CLI demo with transformers backend for the glm-4-9b model,
allowing users to interact with the model through a command-line interface.
Usage:
- Run the script to start the CLI demo.
- Interact with the model by typing questions and receiving responses.
Note: The script includes a modification to handle markdown to plain text conversion,
ensuring that the CLI interface displays formatted text correctly.
"""
import os
import torch
from threading import Thread
from transformers import AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer, AutoModel
MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4-9b-chat')
## If use peft model.
# def load_model_and_tokenizer(model_dir, trust_remote_code: bool = True):
# if (model_dir / 'adapter_config.json').exists():
# model = AutoModel.from_pretrained(
# model_dir, trust_remote_code=trust_remote_code, device_map='auto'
# )
# tokenizer_dir = model.peft_config['default'].base_model_name_or_path
# else:
# model = AutoModel.from_pretrained(
# model_dir, trust_remote_code=trust_remote_code, device_map='auto'
# )
# tokenizer_dir = model_dir
# tokenizer = AutoTokenizer.from_pretrained(
# tokenizer_dir, trust_remote_code=trust_remote_code, use_fast=False
# )
# return model, tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
encode_special_tokens=True
)
model = AutoModel.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
device_map="auto").eval()
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = model.config.eos_token_id
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
if __name__ == "__main__":
history = []
max_length = 8192
top_p = 0.8
temperature = 0.6
stop = StopOnTokens()
print("Welcome to the GLM-4-9B CLI chat. Type your messages below.")
while True:
user_input = input("\nYou: ")
if user_input.lower() in ["exit", "quit"]:
break
history.append([user_input, ""])
messages = []
for idx, (user_msg, model_msg) in enumerate(history):
if idx == len(history) - 1 and not model_msg:
messages.append({"role": "user", "content": user_msg})
break
if user_msg:
messages.append({"role": "user", "content": user_msg})
if model_msg:
messages.append({"role": "assistant", "content": model_msg})
model_inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer=tokenizer,
timeout=60,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = {
"input_ids": model_inputs,
"streamer": streamer,
"max_new_tokens": max_length,
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
"stopping_criteria": StoppingCriteriaList([stop]),
"repetition_penalty": 1.2,
"eos_token_id": model.config.eos_token_id,
}
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
print("GLM-4:", end="", flush=True)
for new_token in streamer:
if new_token:
print(new_token, end="", flush=True)
history[-1][1] += new_token
history[-1][1] = history[-1][1].strip()