File size: 15,232 Bytes
0c3ae0b
3b561b2
 
 
0c43594
 
 
 
 
 
 
3b561b2
0c43594
59005cf
e84b34f
0dcd7ee
e84b34f
a3a78ff
0dcd7ee
 
e84b34f
 
 
3cb9e1c
0dcd7ee
 
e84b34f
 
 
 
 
10dd9d7
 
892b5cd
10dd9d7
8adced8
 
 
 
 
 
 
 
 
5446ba7
f3a2a3b
 
80162ec
 
fd6d17c
f3a2a3b
 
e84b34f
e0ba99f
bf6e615
0c43594
 
 
 
47557e6
9f23b12
66c74b5
2f5c596
9f23b12
5446ba7
bf6e615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58187c4
 
 
 
 
 
 
 
cf92956
58187c4
e149b71
 
 
6185ee4
 
 
 
 
 
 
 
 
58187c4
2f5c596
 
58187c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b4b8b8
4f0eb11
 
 
 
b28bd1a
148c463
fe50d5a
 
 
 
 
 
 
 
 
 
 
 
0f4e6bf
 
 
 
 
 
 
fe50d5a
 
 
80162ec
 
fe50d5a
 
 
58187c4
 
 
 
 
 
 
 
 
d023960
58187c4
 
18a354d
 
 
 
 
 
 
 
 
 
 
0490910
 
 
 
 
 
 
18a354d
 
 
 
 
 
 
 
 
 
 
 
 
 
6185ee4
4571263
5e2a8be
58187c4
50ec890
0f4e6bf
 
 
 
5e2a8be
09b7ce7
 
58187c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6168ab
 
 
 
 
 
 
 
 
50ec890
58187c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b7ce7
 
5e2a8be
 
 
f91c972
 
 
58187c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a2a3b
 
e84b34f
 
5e2a8be
 
 
 
b72f6c5
50ec890
b72f6c5
 
6db6a42
 
0c43594
9f23b12
f3a2a3b
03deed5
f3a2a3b
 
0c43594
03deed5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
enhanced_accessibility = False #@param {type:"boolean"}
#@markdown ---

#@markdown #### Please select your language:
#lang_select = "English" #@param ["English", "Spanish"]
#if lang_select == "English":
#  lang = "en"
#elif lang_select == "Spanish":
 #   lang = "es"
#else:
#    raise Exception("Language not supported.")
#@markdown ---
lang = "en"
use_gpu = False #@param {type:"boolean"}

from fastapi import FastAPI, Request, Form
from fastapi.responses import HTMLResponse
from fastapi.responses import FileResponse
from fastapi.templating import Jinja2Templates
import logging

app = FastAPI()
templates = Jinja2Templates(directory="templates")

# Configure logging
logging.basicConfig(level=logging.DEBUG)
# Mock data for your interface
data = {
    "speaker_options": ["Speaker 1", "Speaker 2", "Speaker 3"],
    "default_speaker": "Speaker 1",
}
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
    return templates.TemplateResponse("interface.html", {"request": request, "data": data})

import json
import logging
import math
import sys
from pathlib import Path
from enum import Enum
from typing import Iterable, List, Optional, Union
import numpy as np
import onnxruntime

import glob
import ipywidgets as widgets
from pydub import AudioSegment
import tempfile
import soundfile as sf
from IPython.display import display, Audio, Markdown, clear_output
from piper_phonemize import phonemize_codepoints, phonemize_espeak, tashkeel_run

_LOGGER = logging.getLogger("piper_train.infer_onnx")
import os
#if not os.path.exists("./content/piper/src/python/lng"):
 #   import subprocess
 #   command = "cp -r ./content/piper/notebooks/lng ./content/piper/src/python/lng"
 #   subprocess.run(command, shell=True)

import sys
#sys.path.append('/content/piper/notebooks')
sys.path.append('./content/piper/src/python')
import configparser

class Translator:
    def __init__(self):
        self.configs = {}

    def load_language(self, language_name):
        if language_name not in self.configs:
            config = configparser.ConfigParser()
            config.read(os.path.join(os.getcwd(), "lng", f"{language_name}.lang"))
            self.configs[language_name] = config

    def translate(self, language_name, string):
        if language_name == "en":
            return string
        elif language_name not in self.configs:
            self.load_language(language_name)
        config = self.configs[language_name]
        try:
            return config.get("Strings", string)
        except (configparser.NoOptionError, configparser.NoSectionError):
            if string:
                return string
            else:
                raise Exception("language engine error: This translation is corrupt!")
                return 0
#from translator import *
lan = Translator()
def detect_onnx_models(path):
    onnx_models = glob.glob(path + '/*.onnx')
    if len(onnx_models) > 1:
        return onnx_models
    elif len(onnx_models) == 1:
        return onnx_models[0]
    else:
        return None
renamed_audio_file = None

#@app.post("/synthesize")
#@app.post("/", response_class=FileResponse)
@app.post("/", response_class=HTMLResponse)
async def main(
    request: Request,
    text_input: str = Form(...),
    speaker: str = Form(...),
    speed_slider: float = Form(1.0),
    noise_scale_slider: float = Form(0.667),
    noise_scale_w_slider: float = Form(1.0),
    play: bool = Form(True)
):
    """Main entry point"""
    sys.path.append('./content/piper/src/python')
    models_path = "./content/piper/src/python"
    logging.basicConfig(level=logging.DEBUG)
    providers = [
        "CPUExecutionProvider"
        if use_gpu is False
        else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"})
    ]
    sess_options = onnxruntime.SessionOptions()
    model = None
    onnx_models = detect_onnx_models(models_path)
    speaker_selection = widgets.Dropdown(
        options=[],
        description=f'{lan.translate(lang, "Select speaker")}:',
        layout={'visibility': 'hidden'}
    )
    if onnx_models is None:
        if enhanced_accessibility:
            playaudio("novoices")
        raise Exception(lan.translate(lang, "No downloaded voice packages!"))
    elif isinstance(onnx_models, str):
        onnx_model = onnx_models
        model, config = load_onnx(onnx_model, sess_options, providers)
        print("nuber of speakers = ", config["num_speakers"])
        print("speaker", speaker)
#        rate = speed_slider.value
 #       noise_scale = noise_scale_slider.value
#        noise_scale_w = noise_scale_w_slider.value
        auto_play = play
        audio = inferencing(model, config, 0, text_input, speed_slider, noise_scale_slider, noise_scale_w_slider, auto_play)
        temp_dir = tempfile.mkdtemp()

        # Create a temporary directory to store the audio files
        temp_dir = tempfile.mkdtemp()

        # Export the audio to an MP3 file in the temporary directory
        temp_audio_file = os.path.join(temp_dir, "generated_audio.mp3")
        audio.export(temp_audio_file, format="mp3")

        # Rename the audio file based on the text input
        renamed_audio_file = os.path.join(temp_dir, f"{text_input}.mp3")
        os.rename(temp_audio_file, renamed_audio_file)
        # Specify the path to your MP3 audio file
   #     audio_file_path = "path/to/your/audio.mp3"

    # Check if the file exists
 #       if not os.path.exists(audio_file_path):
  #         return {"detail": "Audio file not found"}


#        temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
#        audio.export(temp_audio_file.name, format="mp3")
    
    # Rename the temporary audio file based on the text input
 #       global renamed_audio_file
#        renamed_audio_file = os.path.join(tempfile.gettempdir(), f"{text_input}.mp3")
#        os.rename(temp_audio_file.name, renamed_audio_file)
        if config["num_speakers"] > 1:
            speaker_selection.options = config["speaker_id_map"].values()
            speaker_selection.layout.visibility = 'visible'
            preview_sid = 0
        else:
            speaker_selection.layout.visibility = 'hidden'
            preview_sid = None
    else:
        voice_model_names = []
        for current in onnx_models:
            voice_struct = current.split("/")[5]
            voice_model_names.append(voice_struct)
#        if enhanced_accessibility:
#            playaudio("selectmodel")
#        selection = widgets.Dropdown(
#            options=voice_model_names,
#            description=f'{lan.translate(lang, "Select voice package")}:',
#        )
#        load_btn = widgets.Button(
#            description=lan.translate(lang, "Load it!")
#        )
#       config = None
#        def load_model(button):
 #       nonlocal config
  #      global onnx_model
  #      nonlocal model
   #     nonlocal models_path
   #     selected_voice = selection.value
     #   onnx_model = f"{models_path}/{selected_voice}"
  #      model, config = load_onnx(onnx_model, sess_options, providers)
#            if enhanced_accessibility:
#                playaudio("loaded")
#            if config["num_speakers"] > 1:
#                speaker_selection.options = config["speaker_id_map"].values()
#                speaker_selection.layout.visibility = 'visible'
#                if enhanced_accessibility:
#                    playaudio("multispeaker")
#            else:
#                speaker_selection.layout.visibility = 'hidden'

 #       load_btn.on_click(load_model)
 #       display(selection, load_btn)
#    display(speaker_selection)


        
    

        # Save the audio as a temporary WAV file
 #   return templates.TemplateResponse("interface.html", {"request": request, "audio_file": renamed_audio_file,  "data": data})
   
    # Serve the audio file with the correct media type
    return FileResponse(renamed_audio_file)


  #  return {"message": f"Text to synthesize: {text_input}, Speed: {speed_slider}, Play: {play}"}

def load_onnx(model, sess_options, providers = ["CPUExecutionProvider"]):
    _LOGGER.debug("Loading model from %s", model)
    config = load_config(model)
    model = onnxruntime.InferenceSession(
        str(model),
        sess_options=sess_options,
        providers= providers
    )
    _LOGGER.info("Loaded model from %s", model)
    return model, config

def load_config(model):
    with open(f"{model}.json", "r") as file:
        config = json.load(file)
    return config
PAD = "_"  # padding (0)
BOS = "^"  # beginning of sentence
EOS = "$"  # end of sentence

class PhonemeType(str, Enum):
    ESPEAK = "espeak"
    TEXT = "text"

def phonemize(config, text: str) -> List[List[str]]:
    """Text to phonemes grouped by sentence."""
    if config["phoneme_type"] == PhonemeType.ESPEAK:
        if config["espeak"]["voice"] == "ar":
            # Arabic diacritization
            # https://github.com/mush42/libtashkeel/
            text = tashkeel_run(text)
        return phonemize_espeak(text, config["espeak"]["voice"])
    if config["phoneme_type"] == PhonemeType.TEXT:
        return phonemize_codepoints(text)
    raise ValueError(f'Unexpected phoneme type: {config["phoneme_type"]}')

def phonemes_to_ids(config, phonemes: List[str]) -> List[int]:
    """Phonemes to ids."""
    id_map = config["phoneme_id_map"]
    ids: List[int] = list(id_map[BOS])
    for phoneme in phonemes:
        if phoneme not in id_map:
            print("Missing phoneme from id map: %s", phoneme)
            continue
        ids.extend(id_map[phoneme])
        ids.extend(id_map[PAD])
    ids.extend(id_map[EOS])
    return ids
def audio_float_to_int16(
    audio: np.ndarray, max_wav_value: float = 32767.0
) -> np.ndarray:
    """Normalize audio and convert to int16 range"""
    audio_norm = audio * (max_wav_value / max(0.01, np.max(np.abs(audio))))
    audio_norm = np.clip(audio_norm, -max_wav_value, max_wav_value)
    audio_norm = audio_norm.astype("int16")
    return audio_norm
    
def inferencing(model, config, sid, line, length_scale = 1, noise_scale = 0.667, noise_scale_w = 0.8, auto_play=True):
    audios = []
    if config["phoneme_type"] == "PhonemeType.ESPEAK":
        config["phoneme_type"] = "espeak"
    text = phonemize(config, line)
    for phonemes in text:
        phoneme_ids = phonemes_to_ids(config, phonemes)
        num_speakers = config["num_speakers"]
        if num_speakers == 1:
            speaker_id = None # for now
        else:
            speaker_id = sid
        text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0)
        text_lengths = np.array([text.shape[1]], dtype=np.int64)
        scales = np.array(
            [noise_scale, length_scale, noise_scale_w],
            dtype=np.float32,
        )
        sid = None
        if speaker_id is not None:
            sid = np.array([speaker_id], dtype=np.int64)
        audio = model.run(
            None,
            {
                "input": text,
                "input_lengths": text_lengths,
                "scales": scales,
                "sid": sid,
            },
        )[0].squeeze((0, 1))
        audio = audio_float_to_int16(audio.squeeze())
        audios.append(audio)
    merged_audio = np.concatenate(audios)
    sample_rate = config["audio"]["sample_rate"]
    temp_audio_path = os.path.join(tempfile.gettempdir(), "generated_audio.wav")
    sf.write(temp_audio_path, merged_audio, config["audio"]["sample_rate"])
    audio = AudioSegment.from_mp3(temp_audio_path)
    return audio
#    return FileResponse(temp_audio_path)
    # Return the audio file as a FastAPI response
  #  display(Markdown(f"{line}"))
   # display(Audio(merged_audio, rate=sample_rate, autoplay=auto_play))

def denoise(
    audio: np.ndarray, bias_spec: np.ndarray, denoiser_strength: float
) -> np.ndarray:
    audio_spec, audio_angles = transform(audio)

    a = bias_spec.shape[-1]
    b = audio_spec.shape[-1]
    repeats = max(1, math.ceil(b / a))
    bias_spec_repeat = np.repeat(bias_spec, repeats, axis=-1)[..., :b]

    audio_spec_denoised = audio_spec - (bias_spec_repeat * denoiser_strength)
    audio_spec_denoised = np.clip(audio_spec_denoised, a_min=0.0, a_max=None)
    audio_denoised = inverse(audio_spec_denoised, audio_angles)

    return audio_denoised


def stft(x, fft_size, hopsamp):
    """Compute and return the STFT of the supplied time domain signal x.
    Args:
        x (1-dim Numpy array): A time domain signal.
        fft_size (int): FFT size. Should be a power of 2, otherwise DFT will be used.
        hopsamp (int):
    Returns:
        The STFT. The rows are the time slices and columns are the frequency bins.
    """
    window = np.hanning(fft_size)
    fft_size = int(fft_size)
    hopsamp = int(hopsamp)
    return np.array(
        [
            np.fft.rfft(window * x[i : i + fft_size])
            for i in range(0, len(x) - fft_size, hopsamp)
        ]
    )


def istft(X, fft_size, hopsamp):
    """Invert a STFT into a time domain signal.
    Args:
        X (2-dim Numpy array): Input spectrogram. The rows are the time slices and columns are the frequency bins.
        fft_size (int):
        hopsamp (int): The hop size, in samples.
    Returns:
        The inverse STFT.
    """
    fft_size = int(fft_size)
    hopsamp = int(hopsamp)
    window = np.hanning(fft_size)
    time_slices = X.shape[0]
    len_samples = int(time_slices * hopsamp + fft_size)
    x = np.zeros(len_samples)
    for n, i in enumerate(range(0, len(x) - fft_size, hopsamp)):
        x[i : i + fft_size] += window * np.real(np.fft.irfft(X[n]))
    return x


def inverse(magnitude, phase):
    recombine_magnitude_phase = np.concatenate(
        [magnitude * np.cos(phase), magnitude * np.sin(phase)], axis=1
    )

    x_org = recombine_magnitude_phase
    n_b, n_f, n_t = x_org.shape  # pylint: disable=unpacking-non-sequence
    x = np.empty([n_b, n_f // 2, n_t], dtype=np.complex64)
    x.real = x_org[:, : n_f // 2]
    x.imag = x_org[:, n_f // 2 :]
    inverse_transform = []
    for y in x:
        y_ = istft(y.T, fft_size=1024, hopsamp=256)
        inverse_transform.append(y_[None, :])

    inverse_transform = np.concatenate(inverse_transform, 0)

    return inverse_transform


def transform(input_data):
    x = input_data
    real_part = []
    imag_part = []
    for y in x:
        y_ = stft(y, fft_size=1024, hopsamp=256).T
        real_part.append(y_.real[None, :, :])  # pylint: disable=unsubscriptable-object
        imag_part.append(y_.imag[None, :, :])  # pylint: disable=unsubscriptable-object
    real_part = np.concatenate(real_part, 0)
    imag_part = np.concatenate(imag_part, 0)

    magnitude = np.sqrt(real_part**2 + imag_part**2)
    phase = np.arctan2(imag_part.data, real_part.data)

    return magnitude, phase



#@app.get("/")
#async def read_root(request: Request):
#   return templates.TemplateResponse("interface.html", {"request": request})

if __name__ == "__main__":
 #   main()
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)
#    main()
#    pass
   # app()  
    
# Create an instance of the FastAPI class
#app = main()

# Define a route for the root endpoint

#def read_root():
#  return {"message": "Hello, World!"}