File size: 19,155 Bytes
0c3ae0b
3b561b2
 
 
0c43594
 
 
 
 
c99413a
0c43594
 
3b561b2
d10e342
e84b34f
92a9cde
d28b080
a3a78ff
0dcd7ee
2db93aa
 
 
7ab98f2
2db93aa
0dcd7ee
e84b34f
953a75a
e84b34f
7ab98f2
e84b34f
888d297
0dcd7ee
 
e84b34f
 
1f43813
6eef917
e84b34f
fcc3f8c
 
780b581
 
a8be640
780b581
 
 
 
 
 
 
8adced8
 
 
 
 
fb47690
8adced8
 
5446ba7
f3a2a3b
06f3d1a
80162ec
 
e47f71a
953a75a
06f3d1a
f3a2a3b
7de3c3d
21163f7
 
dce78d4
 
 
 
780b581
dce78d4
 
7b6d324
21163f7
ed3cf42
bf6e615
1322116
0c43594
 
 
 
47557e6
9f23b12
66c74b5
2f5c596
9f23b12
5446ba7
bf6e615
 
ed3cf42
bf6e615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58187c4
fc031f9
 
58187c4
1b9314f
58187c4
caf7c50
58187c4
 
fc66451
6a3a86a
fc66451
6a3a86a
 
fc66451
 
6a3a86a
 
 
 
 
 
 
 
 
 
1b010e9
1b9314f
d4a1f1c
bc7cf62
d4a1f1c
 
 
 
 
 
 
 
 
 
 
bc7cf62
 
8c2cb95
5288ae8
 
da3c393
5288ae8
 
 
 
07e31be
5288ae8
 
1b9314f
8c2cb95
fbe764d
3e91c45
fbe764d
5bba7ff
dd6cf58
fbe764d
3e91c45
4d878ba
dd6cf58
fc031f9
a8be640
3e91c45
 
 
 
 
 
 
691f5ff
 
 
caf7c50
a8be640
fc66451
aa8ee3c
fc66451
aa8ee3c
 
fc66451
 
aa8ee3c
 
 
 
 
 
 
 
4d878ba
dd6cf58
5288ae8
e149b71
6185ee4
3d587bf
fae63ed
2cafbec
fc66451
6185ee4
1921882
 
 
fc66451
d0d6bb3
6185ee4
107b5f4
 
caf7c50
07e31be
 
e13e1dd
 
6fb1b3c
e13e1dd
07e31be
 
 
 
5b0c0b4
07e31be
 
311bb00
d0d6bb3
92a9cde
 
07e31be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322116
07e31be
107b5f4
da3c393
e39ced4
 
 
bae184f
e39ced4
bae184f
 
 
 
5e2a8be
d295852
107b5f4
e39ced4
 
 
 
 
 
d295852
9a2b0d8
 
107b5f4
de9677f
e39ced4
 
09b7ce7
906a82c
268fc4f
 
 
 
 
 
 
 
58187c4
6fb1b3c
ed3cf42
58187c4
 
 
 
 
 
ed3cf42
58187c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322116
58187c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6168ab
 
 
 
 
 
 
 
 
e23953c
 
58187c4
c62c988
 
 
 
 
 
42063fc
e23953c
58187c4
e23953c
58187c4
e23953c
 
 
 
58187c4
 
 
 
 
 
 
 
e23953c
58187c4
 
 
 
 
 
 
 
 
e23953c
58187c4
 
 
09b7ce7
 
5e2a8be
9155aaa
5e2a8be
58187c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a2a3b
 
e84b34f
 
5e2a8be
 
 
 
b72f6c5
50ec890
b72f6c5
 
6db6a42
 
0c43594
9f23b12
f3a2a3b
03deed5
f3a2a3b
 
0c43594
03deed5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
enhanced_accessibility = False #@param {type:"boolean"}
#@markdown ---

#@markdown #### Please select your language:
#lang_select = "English" #@param ["English", "Spanish"]
#if lang_select == "English":
#  lang = "en"
#elif lang_select == "Spanish":
 #   lang = "es"

#else:
#    raise Exception("Language not supported.")
#@markdown ---
use_gpu = True #@param {type:"boolean"}

from fastapi import FastAPI, Request, Form
from fastapi.responses import HTMLResponse
from fastapi.responses import FileResponse
from fastapi.templating import Jinja2Templates
from fastapi.staticfiles import StaticFiles
# ...
# Mount a directory to serve static files (e.g., CSS and JavaScript)


import logging


app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
files = {}
# Configure logging
logging.basicConfig(level=logging.DEBUG)
# Mock data for your interface
data = {
    "speaker_options": ["en","en-us","en-029","en-gb-x-gbclan","en-gb-x-rp","en-gb-scotland","en-gb-gbcwmd", "es", "de", "pl","ar","be","bn","bpy","bs","bg","ca","yue","hak","haw","cmn","hr","cs","da","nl","eo","et","fa","fa-latn","fi","fr-be","fr","ga","gd","ka","grc","el","kl","gn","gu","ht","he","hi","hu","id","io","it","ja","kn","kok","ko","ku","kk","ky","la","lb","ltg","lv","lfn","lt","jbo","mi","mk","ms","ml","mt","mr","nci","ne","nb","nog","or","om","pap","pt-br","pt","ro","ru","ru-lv","uk","sjn","sr","tn","sd","shn","si","sk","sl","es","es-419","sw","sv","ta","th","tk","tt","te","tr","ug","ur","uz","vi-vn-x-central","vi","vi0vn-x-south"],
    "default_speaker": "en",
}
# Define a dictionary to store model configurations
model_configurations = {}
# Define global variables
onnx_models = []  # A list to store model names
onnx_configs = []
speaker_id_map = {
        "speaker1": "Speaker 1 Name",
        "speaker2": "Speaker 2 Name",
        # Add more speaker IDs and names as needed
    }


import logging
import math
import sys
from pathlib import Path
from enum import Enum
from typing import Iterable, List, Optional, Union
import numpy as np
import onnxruntime

import glob
#import ipywidgets as widgets
from pydub import AudioSegment
import tempfile
import uuid
import soundfile as sf
#from IPython.display import display, Audio, Markdown, clear_output
from piper_phonemize import phonemize_codepoints, phonemize_espeak, tashkeel_run

@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
    # You should populate data and model_configurations here
    # Make sure speaker_id_map is defined and populated correctly
   # data = {"your_data_key": "your_data_value"}  # Replace with your data
   # model_configurations = {}  # Replace with your model configurations

    
    # Ensure that speaker_id_map is included in the context
    return templates.TemplateResponse("interface.html", {"request": request, "data": data, "model_names": onnx_models, "speaker_id_map": speaker_id_map})
import json
_LOGGER = logging.getLogger("piper_train.infer_onnx")
import os
read_key = os.environ.get('HF_TOKEN', None)
#if not os.path.exists("./content/piper/src/python/lng"):
 #   import subprocess
 #   command = "cp -r ./content/piper/notebooks/lng ./content/piper/src/python/lng"
 #   subprocess.run(command, shell=True)

import sys
#sys.path.append('/content/piper/notebooks')
sys.path.append('./content/piper/src/python')
import configparser

class Translator:
    def __init__(self):
        self.configs = {}

    def load_language(self, language_name):
        if language_name not in self.configs:
            config = configparser.ConfigParser()
            config.read(os.path.join(os.getcwd(), "lng", f"{language_name}.lang"))
            self.configs[language_name] = config

    def translate(self, language_name, string):
        if language_name == "en":
            return string
        elif language_name not in self.configs:
            self.load_language(language_name)
        config = self.configs[language_name]
        try:
            return config.get("Strings", string)
        except (configparser.NoOptionError, configparser.NoSectionError):
            if string:
                return string
            else:
                raise Exception("language engine error: This translation is corrupt!")
                return 0
#from translator import *
lan = Translator()
def detect_onnx_models(path):
    onnx_models = glob.glob(path + '/*.onnx')
    onnx_configs = glob.glob(path + '/*.json')
    if len(onnx_models) > 1:
        return onnx_models, onnx_configs  # Return both lists as a tuple
    elif len(onnx_models) == 1:
        return onnx_models[0], onnx_configs[0]
    else:
        return None
# Define a dependency function to get the selected_model and selected_speaker_id on startup
#def get_initial_values():
    # You can set default values or load them from a configuration file here
 #   selected_model = onnx_models[0] if onnx_models else "default_model"
 #   selected_speaker_id = 0  # Default value

    # Check if there are onnx models and load the speaker_id_map from the first model's config
  #  if onnx_models:
  #      first_model_config = model_configurations.get(onnx_models[0])
  #      if first_model_config:
  #          speaker_id_map = first_model_config.get("speaker_id_map")
  #          if speaker_id_map:
  #              selected_speaker_id = next(iter(speaker_id_map))  # Get the first speaker_id
 #           else:
  #              selected_speaker_id = 0

  #  return selected_model, selected_speaker_id
@app.get("/get_speaker_id_map")
async def get_speaker_id_map(selected_model: str):
    config = model_configurations.get(selected_model + ".json")

    if config:
        speaker_id_map = config.get("speaker_id_map", {})

        if not speaker_id_map:
            # Assign a default value to speaker_id_map if it's empty
            speaker_id_map = {"speaker1": "0"}

        return {"speaker_id_map": speaker_id_map}

    # Handle the case where the config is not available for the selected model
    return {"speaker_id_map": {}}



@app.on_event("startup")
async def load_model_data():
    global config_names, onnx_models, model_configurations, models_path  # Make onnx_models, model_configurations, and models_path available globally
    # Load data for all models in the directory upon startup
    sys.path.append('./content/piper/src/python')
    models_path = "./content/piper/src/python"
    logging.basicConfig(level=logging.DEBUG)
  

    # Collect data for all models in the directory and populate model_configurations
    model_names, config_names = detect_onnx_models(models_path)
    onnx_models = model_names  # Populate onnx_models here
    for config_name in config_names:
        # Load the configuration data for each model (including speaker_id_map)
        config = load_model_configuration(models_path, config_name)  # Pass config_name, not models_path

        if config:
            model_configurations[config_name] = config

def load_model_configuration(models_path, config_name):
    # Assuming config_name is the name of the JSON configuration file, e.g., 'model.json'
    config_file_path = os.path.join("", config_name)

    try:
        with open(config_file_path, 'r') as config_file:
            config_data = json.load(config_file)
        return config_data
    except FileNotFoundError:
        # Handle the case where the configuration file does not exist
        return None
    except IsADirectoryError:
        # Handle the case where config_name is a directory (not a file)
        return None


# Define a dependency function to get the selected_model and selected_speaker_id on startup
#def get_initial_values() -> Tuple[str, str]:
    # You can set default values or load them from a configuration file here
#    selected_model = onnx_models[0] if onnx_models else "default_model"
#    selected_speaker_id = "default_speaker_id"  # Default value

    # Check if there are onnx models and load the speaker_id_map from the first model's config
#    if onnx_models:
#        first_model_config = model_configurations.get(onnx_models[0])
#        if first_model_config:
#            speaker_id_map = first_model_config.get("speaker_id_map")
#            if speaker_id_map:
#                selected_speaker_id = next(iter(speaker_id_map))  # Get the first speaker_id

    #return selected_model, selected_speaker_id


        
@app.post("/", response_class=HTMLResponse)
async def main(
    request: Request,
    text_input: str = Form(default="1, 2, 3. This is a test. Enter some text to generate."),
    selected_model: str = Form(...),  # Selected model
    selected_speaker_id: str = Form(...),  # Selected speaker ID
    speaker: str = Form(...),
    speed_slider: float = Form(...),
    noise_scale_slider: float = Form(...),
    noise_scale_w_slider: float = Form(...),
    play: bool = Form(True),
  #  initial_values: Tuple[str, str] = Depends(get_initial_values)  # Use the dependency here
):
    # ... (previous code)

    if selected_model in onnx_models:
      #  model_name = selected_model
      #  onnx_model = selected_model  # Replace with the actual key for your ONNX model file


  #      providers = [("CUDAExecutionProvider", {"cudnn_conv_use_max_workspace": '1'})]

        providers = ["CPUExecutionProvider"
        if use_gpu is False
        else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"})
        ]
        print(onnxruntime.get_device())
        sess_options = onnxruntime.SessionOptions()
        model, config = load_onnx(selected_model, sess_options, providers)
        config["espeak"]["voice"] = speaker
       # speaker_id_map = config.get("speaker_id_map", {})
        print(text_input)
        print(speaker)

        auto_play = play
        audio = inferencing(model, config, selected_speaker_id, text_input, speed_slider, noise_scale_slider, noise_scale_w_slider, auto_play)
        temp_dir = tempfile.mkdtemp()
        renamed_audio_file = os.path.join(temp_dir, "download.mp3")
        audio.export(renamed_audio_file, format="mp3")

        # Generate a unique file ID
        file_id = str(uuid.uuid4())

        # Store the file path with the generated file ID
        files[file_id] = renamed_audio_file

        # Create a URL to download the file
        file_url = f'/download?fileId={file_id}'

        # Restore the form and return the response
        response_html = """
        <script>
        document.getElementById("loading-message").innerText = "Audio generated successfully!";
        document.getElementById("synthesize_button").disabled = false;
        </script>

        """


    else:
        # The selected_model is not found in the list; handle this case as needed
        # You can show an error message or handle it differently
        response_html = """
        <div id="error-message">Selected model not found.</div>
        <script>
        document.getElementById("synthesize_button").disabled = true;
        </script>
        """

  
    # Pass the necessary data to the HTML template, including speaker_id_map
    return templates.TemplateResponse("interface.html", {
        "request": request,
        "file_url": file_url,
        "text_input": text_input,
        "data": data,
        "selected_model": selected_model,
        "model_names": onnx_models,
        "selected_model": selected_model,
        "selected_speaker_id": selected_speaker_id,
        "speaker_id_map": speaker_id_map,  # Make sure speaker_id_map is included here

        "dynamic_content": response_html
    })

@app.get("/download")
async def download_file(fileId: str):
    # Retrieve the file path from the dictionary using the file ID
    filepath = files.get(fileId)
    if filepath:
        # Create a FileResponse to serve the file for download
        return FileResponse(filepath, headers={"Content-Disposition": "attachment"})
    else:
        return {"error": "File not found"}

def load_onnx(model, sess_options, providers):
    _LOGGER.debug("Loading model from %s", model)
    config = load_config(model)
    model = onnxruntime.InferenceSession(
        str(model),
        sess_options=sess_options,
        providers= providers
    )
    _LOGGER.info("Loaded model from %s", model)
    return model, config

def load_config(model):
    with open(f"{model}.json", "r") as file:
        config = json.load(file)
    return config
PAD = "_"  # padding (0)
BOS = "^"  # beginning of sentence
EOS = "$"  # end of sentence

class PhonemeType(str, Enum):
    ESPEAK = "espeak"
    TEXT = "text"

def phonemize(config, text: str) -> List[List[str]]:
    """Text to phonemes grouped by sentence."""
    if config["phoneme_type"] == PhonemeType.ESPEAK:
        if config["espeak"]["voice"] == "ar":
            # Arabic diacritization
            # https://github.com/mush42/libtashkeel/
            text = tashkeel_run(text)
        return phonemize_espeak(text, config["espeak"]["voice"])

    if config["phoneme_type"] == PhonemeType.TEXT:
        return phonemize_codepoints(text)
    raise ValueError(f'Unexpected phoneme type: {config["phoneme_type"]}')

def phonemes_to_ids(config, phonemes: List[str]) -> List[int]:
    """Phonemes to ids."""
    id_map = config["phoneme_id_map"]
    ids: List[int] = list(id_map[BOS])
    for phoneme in phonemes:
        if phoneme not in id_map:
            print("Missing phoneme from id map: %s", phoneme)
            continue
        ids.extend(id_map[phoneme])
        ids.extend(id_map[PAD])
    ids.extend(id_map[EOS])
    return ids
def audio_float_to_int16(
    audio: np.ndarray, max_wav_value: float = 32767.0
) -> np.ndarray:
    """Normalize audio and convert to int16 range"""
    audio_norm = audio * (max_wav_value / max(0.01, np.max(np.abs(audio))))
    audio_norm = np.clip(audio_norm, -max_wav_value, max_wav_value)
    audio_norm = audio_norm.astype("int16")
    return audio_norm
    

def inferencing(model, config, sid, line, length_scale, noise_scale, noise_scale_w, auto_play=True):
    audios = []
    # Check if 'phoneme_type' exists in the config dictionary
    phoneme_type = config.get("phoneme_type", PhonemeType.ESPEAK.value)


    # Fix applied here
    if phoneme_type == PhonemeType.ESPEAK.value:
        config["phoneme_type"] = "espeak"
    text = phonemize(config, line)
    for phonemes in text:
        phoneme_ids = phonemes_to_ids(config, phonemes)
        num_speakers = config["num_speakers"]
        if num_speakers == 1:
            speaker_id = None  # for now
        else:
            speaker_id = sid
        text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0)
        text_lengths = np.array([text.shape[1]], dtype=np.int64)
        scales = np.array(
            [noise_scale, length_scale, noise_scale_w],
            dtype=np.float32,
        )
        sid = None
        if speaker_id is not None:
            sid = np.asarray([int(speaker_id)], dtype=np.int64)  # Convert to 1D array
        audio = model.run(
            None,
            {
                "input": text,
                "input_lengths": text_lengths,
                "scales": scales,
                "sid": sid,
            },
        )[0].squeeze((0, 1))
        audio = audio_float_to_int16(audio.squeeze())
        audios.append(audio)
    merged_audio = np.concatenate(audios)
    sample_rate = config["audio"]["sample_rate"]
    temp_audio_path = os.path.join(tempfile.gettempdir(), "generated_audio.wav")
    sf.write(temp_audio_path, merged_audio, config["audio"]["sample_rate"])
    audio = AudioSegment.from_mp3(temp_audio_path)
    os.remove(temp_audio_path)
    return audio

def denoise(
    audio: np.ndarray, bias_spec: np.ndarray, denoiser_strength: float
) -> np.ndarray:
    audio_spec, audio_angles = transform(audio)

    a = bias_spec.shape[-1]
    b = audio_spec.shape[-1]
    repeats = max(1, math.ceil(b / a))
    bias_spec_repeat = np.repeat(bias_spec, repeats, axis=-1)[..., :b]

    audio_spec_denoised = audio_spec - (bias_spec_repeat * denoiser_strength)
    audio_spec_denoised = np.clip(audio_spec_denoised, a_min=0.0, a_max=None)
    audio_denoised = inverse(audio_spec_denoised, audio_angles)

    return audio_denoised


def stft(x, fft_size, hopsamp):
    """Compute and return the STFT of the supplied time domain signal x.
    Args:
        x (1-dim Numpy array): A time domain signal.
        fft_size (int): FFT size. Should be a power of 2, otherwise DFT will be used.
        hopsamp (int):
    Returns:
        The STFT. The rows are the time slices and columns are the frequency bins.
    """
    window = np.hanning(fft_size)
    fft_size = int(fft_size)
    hopsamp = int(hopsamp)
    return np.array(
        [
            np.fft.rfft(window * x[i : i + fft_size])
            for i in range(0, len(x) - fft_size, hopsamp)
        ]
    )


def istft(X, fft_size, hopsamp):
    """Invert a STFT into a time domain signal.
    Args:
        X (2-dim Numpy array): Input spectrogram. The rows are the time slices and columns are the frequency bins.
        fft_size (int):
        hopsamp (int): The hop size, in samples.
    Returns:
        The inverse STFT.
    """
    fft_size = int(fft_size)
    hopsamp = int(hopsamp)
    window = np.hanning(fft_size)
    time_slices = X.shape[0]
    len_samples = int(time_slices * hopsamp + fft_size)
    x = np.zeros(len_samples)
    for n, i in enumerate(range(0, len(x) - fft_size, hopsamp)):
        x[i : i + fft_size] += window * np.real(np.fft.irfft(X[n]))
    return x


def inverse(magnitude, phase):
    recombine_magnitude_phase = np.concatenate(
        [magnitude * np.cos(phase), magnitude * np.sin(phase)], axis=1
    )

    x_org = recombine_magnitude_phase
    n_b, n_f, n_t = x_org.shape  # pylint: disable=unpacking-non-sequence
    x = np.empty([n_b, n_f // 2, n_t], dtype=np.complex64)
    x.real = x_org[:, : n_f // 2]
    x.imag = x_org[:, n_f // 2 :]
    inverse_transform = []
    for y in x:
        y_ = istft(y.T, fft_size=1024, hopsamp=256)
        inverse_transform.append(y_[None, :])

    inverse_transform = np.concatenate(inverse_transform, 0)

    return inverse_transform


def transform(input_data):
    x = input_data
    real_part = []
    imag_part = []
    for y in x:
        y_ = stft(y, fft_size=1024, hopsamp=256).T
        real_part.append(y_.real[None, :, :])  # pylint: disable=unsubscriptable-object
        imag_part.append(y_.imag[None, :, :])  # pylint: disable=unsubscriptable-object
    real_part = np.concatenate(real_part, 0)
    imag_part = np.concatenate(imag_part, 0)

    magnitude = np.sqrt(real_part**2 + imag_part**2)
    phase = np.arctan2(imag_part.data, real_part.data)

    return magnitude, phase



#@app.get("/")
#async def read_root(request: Request):
#   return templates.TemplateResponse("interface.html", {"request": request})

if __name__ == "__main__":
 #   main()
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)
#    main()
#    pass
   # app()  
    
# Create an instance of the FastAPI class
#app = main()

# Define a route for the root endpoint

#def read_root():
#  return {"message": "Hello, World!"}