File size: 16,406 Bytes
0c3ae0b
3b561b2
 
 
0c43594
 
 
 
 
c99413a
0c43594
 
3b561b2
59005cf
e84b34f
0dcd7ee
d28b080
a3a78ff
0dcd7ee
2db93aa
 
 
 
7ab98f2
2db93aa
0dcd7ee
e84b34f
953a75a
e84b34f
7ab98f2
e84b34f
888d297
0dcd7ee
 
e84b34f
 
05c5e6f
6eef917
e84b34f
fcc3f8c
 
780b581
 
 
 
 
 
 
 
 
 
8adced8
 
 
 
 
fb47690
8adced8
 
5446ba7
f3a2a3b
06f3d1a
80162ec
 
e47f71a
953a75a
06f3d1a
f3a2a3b
7de3c3d
21163f7
 
dce78d4
 
 
 
780b581
dce78d4
 
 
21163f7
ed3cf42
bf6e615
0c43594
 
 
 
47557e6
9f23b12
66c74b5
2f5c596
9f23b12
5446ba7
bf6e615
 
ed3cf42
bf6e615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58187c4
 
caf7c50
58187c4
caf7c50
58187c4
caf7c50
58187c4
 
caf7c50
 
cf92956
58187c4
5288ae8
8c2cb95
5288ae8
 
8c2cb95
5288ae8
 
 
 
 
 
 
 
 
 
 
 
3e91c45
8c2cb95
3e91c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caf7c50
5288ae8
e149b71
6185ee4
3d587bf
fae63ed
2cafbec
 
6185ee4
1921882
 
 
3d587bf
6185ee4
107b5f4
 
caf7c50
e39ced4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107b5f4
e39ced4
 
 
bae184f
e39ced4
bae184f
 
 
 
5e2a8be
107b5f4
e39ced4
 
 
 
 
 
 
107b5f4
e39ced4
 
 
09b7ce7
906a82c
268fc4f
 
 
 
 
 
 
 
58187c4
 
ed3cf42
58187c4
 
 
 
 
 
ed3cf42
58187c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6168ab
 
 
 
 
 
 
 
 
4a238c0
58187c4
67e1650
 
58187c4
 
 
 
 
0666b0b
58187c4
 
 
 
 
 
 
 
 
 
0666b0b
58187c4
 
 
 
 
 
 
 
 
 
 
 
 
09b7ce7
 
5e2a8be
 
 
f91c972
 
 
58187c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a2a3b
 
e84b34f
 
5e2a8be
 
 
 
b72f6c5
50ec890
b72f6c5
 
6db6a42
 
0c43594
9f23b12
f3a2a3b
03deed5
f3a2a3b
 
0c43594
03deed5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
enhanced_accessibility = False #@param {type:"boolean"}
#@markdown ---

#@markdown #### Please select your language:
#lang_select = "English" #@param ["English", "Spanish"]
#if lang_select == "English":
#  lang = "en"
#elif lang_select == "Spanish":
 #   lang = "es"

#else:
#    raise Exception("Language not supported.")
#@markdown ---
use_gpu = False #@param {type:"boolean"}

from fastapi import FastAPI, Request, Form
from fastapi.responses import HTMLResponse
from fastapi.responses import FileResponse
from fastapi.templating import Jinja2Templates
from fastapi.staticfiles import StaticFiles

# ...
# Mount a directory to serve static files (e.g., CSS and JavaScript)


import logging


app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
files = {}
# Configure logging
logging.basicConfig(level=logging.DEBUG)
# Mock data for your interface
data = {
    "speaker_options": ["en","en-us","en-029","n-gb-x-gbclan","en-gb-x-rp","en-gb-scotland","en-gb-gbcwmd", "es", "de", "pl","ar","be","bn","bpy","bs","bg","ca","yue","hak","haw","cmn","hr","cs","da","nl","eo","et","fa","fa-latn","fi","fr-be","fr","ga","gd","ka","grc","el","kl","gn","gu","ht","he","hi","hu","id","io","it","ja","kn","kok","ko","ku","kk","ky","la","lb","ltg","lv","lfn","lt","jbo","mi","mk","ms","ml","mt","mr","nci","ne","nb","nog","or","om","pap","pt-br","pt","ro","ru","ru-lv","uk","sjn","sr","tn","sd","shn","si","sk","sl","es","es-419","sw","sv","ta","th","tk","tt","te","tr","ug","ur","uz","vi-vn-x-central","vi","vi0vn-x-south"],
    "default_speaker": "en",
}
# Define a dictionary to store model configurations
model_configurations = {}
# Define global variables
onnx_models = []  # A list to store model names

speaker_id_map = {
        "speaker1": "Speaker 1 Name",
        "speaker2": "Speaker 2 Name",
        # Add more speaker IDs and names as needed
    }


import logging
import math
import sys
from pathlib import Path
from enum import Enum
from typing import Iterable, List, Optional, Union
import numpy as np
import onnxruntime

import glob
#import ipywidgets as widgets
from pydub import AudioSegment
import tempfile
import uuid
import soundfile as sf
#from IPython.display import display, Audio, Markdown, clear_output
from piper_phonemize import phonemize_codepoints, phonemize_espeak, tashkeel_run

@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
    # You should populate data and model_configurations here
    # Make sure speaker_id_map is defined and populated correctly
   # data = {"your_data_key": "your_data_value"}  # Replace with your data
   # model_configurations = {}  # Replace with your model configurations

    
    # Ensure that speaker_id_map is included in the context
    return templates.TemplateResponse("interface.html", {"request": request, "data": data, "model_names": model_configurations.keys(), "speaker_id_map": speaker_id_map})
import json
_LOGGER = logging.getLogger("piper_train.infer_onnx")
import os
#if not os.path.exists("./content/piper/src/python/lng"):
 #   import subprocess
 #   command = "cp -r ./content/piper/notebooks/lng ./content/piper/src/python/lng"
 #   subprocess.run(command, shell=True)

import sys
#sys.path.append('/content/piper/notebooks')
sys.path.append('./content/piper/src/python')
import configparser

class Translator:
    def __init__(self):
        self.configs = {}

    def load_language(self, language_name):
        if language_name not in self.configs:
            config = configparser.ConfigParser()
            config.read(os.path.join(os.getcwd(), "lng", f"{language_name}.lang"))
            self.configs[language_name] = config

    def translate(self, language_name, string):
        if language_name == "en":
            return string
        elif language_name not in self.configs:
            self.load_language(language_name)
        config = self.configs[language_name]
        try:
            return config.get("Strings", string)
        except (configparser.NoOptionError, configparser.NoSectionError):
            if string:
                return string
            else:
                raise Exception("language engine error: This translation is corrupt!")
                return 0
#from translator import *
lan = Translator()
def detect_onnx_models(path):
    onnx_models = glob.glob(path + '/*.onnx')
    onnx_configs = glob.glob(path + '/*.json')
    if len(onnx_models) > 1:
        return onnx_models, onnx_configs
    elif len(onnx_models) == 1:
        return onnx_models[0], onnx_configs[0]
    else:
        return None


renamed_audio_file = None



@app.on_event("startup")
async def load_model_data():
    global onnx_models  # Make onnx_models available globally
    # Load data for all models in the directory upon startup
    sys.path.append('./content/piper/src/python')
    models_path = "./content/piper/src/python"
    logging.basicConfig(level=logging.DEBUG)
    providers = [
        "CPUExecutionProvider"
        if use_gpu is False
        else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"})
    ]
    sess_options = onnxruntime.SessionOptions()

    # Collect data for all models in the directory and populate model_configurations
    model_names = detect_onnx_models(models_path)
    onnx_models = model_names  # Populate onnx_models here
    for model_name in model_names:
        # Load the configuration data for each model (including speaker_id_map)
        config = load_model_configuration(model_name)
        model_configurations[model_name] = config


def load_model_configuration(model_name):
    # Assuming model_name is the path to the ONNX model file, e.g., 'model.onnx'
    config_file_path = model_name.replace('.onnx', '.json')

    try:
        with open(config_file_path, 'r') as config_file:
            config_data = json.load(config_file)
        return config_data
    except FileNotFoundError:
        # Handle the case where the configuration file does not exist
        return None

        
@app.post("/", response_class=HTMLResponse)
async def main(
    request: Request,
    text_input: str = Form(default="1, 2, 3. This is a test. Enter some text to generate."),
    selected_model: str = Form(...),  # Selected model
    selected_speaker_id: str = Form(...),  # Selected speaker ID
    speaker: str = Form(...),
    speed_slider: float = Form(...),
    noise_scale_slider: float = Form(...),
    noise_scale_w_slider: float = Form(...),
    play: bool = Form(True)
):
    # ... (previous code)

    if selected_model in onnx_models:
        model_name = selected_model
        config = load_model_configuration(model_name)
        onnx_model = config.get("onnx_model")  # Replace with the actual key for your ONNX model file
        if config:
            model, _ = load_onnx(onnx_model, sess_options, providers)
            speaker_id_map = config.get("speaker_id_map", {})

            auto_play = play
            audio = inferencing(model, config, 1, text_input, speed_slider, noise_scale_slider, noise_scale_w_slider, auto_play)
            temp_dir = tempfile.mkdtemp()
            renamed_audio_file = os.path.join(temp_dir, "download.mp3")
            audio.export(renamed_audio_file, format="mp3")

            # Generate a unique file ID
            file_id = str(uuid.uuid4())

            # Store the file path with the generated file ID
            files[file_id] = renamed_audio_file

            # Create a URL to download the file
            file_url = f'/download?fileId={file_id}'

            # Restore the form and return the response
            response_html = """
            <script>
            document.getElementById("loading-message").innerText = "Audio generated successfully!";
            document.getElementById("synthesize_button").disabled = false;
            </script>
            """

    else:
        # The selected_model is not found in the list; handle this case as needed
        # You can show an error message or handle it differently
        response_html = """
        <div id="error-message">Selected model not found.</div>
        <script>
        document.getElementById("synthesize_button").disabled = true;
        </script>
        """

    # Pass the necessary data to the HTML template, including speaker_id_map
    return templates.TemplateResponse("interface.html", {
        "request": request,
        "file_url": file_url,
        "text_input": text_input,
        "data": data,
        "model_names": model_configurations.keys(),
        "selected_model": selected_model,
        "speaker_id_map": speaker_id_map,  # Make sure speaker_id_map is included here
        "selected_speaker_id": selected_speaker_id,
        "dynamic_content": response_html
    })

@app.get("/download")
async def download_file(fileId: str):
    # Retrieve the file path from the dictionary using the file ID
    filepath = files.get(fileId)
    if filepath:
        # Create a FileResponse to serve the file for download
        return FileResponse(filepath, headers={"Content-Disposition": "attachment"})
    else:
        return {"error": "File not found"}

def load_onnx(model, sess_options, providers = ["CPUExecutionProvider"]):
    _LOGGER.debug("Loading model from %s", model)
    config = load_config(model)
    model = onnxruntime.InferenceSession(
        str(model),
        sess_options=sess_options,
        providers= providers
    )
    _LOGGER.info("Loaded model from %s", model)
    return model, config

def load_config(model):
    with open(f"{model}.json", "r") as file:
        config = json.load(file)
    return config
PAD = "_"  # padding (0)
BOS = "^"  # beginning of sentence
EOS = "$"  # end of sentence

class PhonemeType(str, Enum):
    ESPEAK = "espeak"
    TEXT = "text"

def phonemize(config, text: str) -> List[List[str]]:
    """Text to phonemes grouped by sentence."""
    if config["phoneme_type"] == PhonemeType.ESPEAK:
        if config["espeak"]["voice"] == "ar":
            # Arabic diacritization
            # https://github.com/mush42/libtashkeel/
            text = tashkeel_run(text)
        return phonemize_espeak(text, config["espeak"]["voice"])
    if config["phoneme_type"] == PhonemeType.TEXT:
        return phonemize_codepoints(text)
    raise ValueError(f'Unexpected phoneme type: {config["phoneme_type"]}')

def phonemes_to_ids(config, phonemes: List[str]) -> List[int]:
    """Phonemes to ids."""
    id_map = config["phoneme_id_map"]
    ids: List[int] = list(id_map[BOS])
    for phoneme in phonemes:
        if phoneme not in id_map:
            print("Missing phoneme from id map: %s", phoneme)
            continue
        ids.extend(id_map[phoneme])
        ids.extend(id_map[PAD])
    ids.extend(id_map[EOS])
    return ids
def audio_float_to_int16(
    audio: np.ndarray, max_wav_value: float = 32767.0
) -> np.ndarray:
    """Normalize audio and convert to int16 range"""
    audio_norm = audio * (max_wav_value / max(0.01, np.max(np.abs(audio))))
    audio_norm = np.clip(audio_norm, -max_wav_value, max_wav_value)
    audio_norm = audio_norm.astype("int16")
    return audio_norm
    
def inferencing(model, config, sid, line, length_scale, noise_scale, noise_scale_w, auto_play=True):
    audios = []
    if config["phoneme_type"] == "PhonemeType.ESPEAK":
        config["phoneme_type"] = "espeak"
    text = phonemize(config, line)
    for phonemes in text:
        phoneme_ids = phonemes_to_ids(config, phonemes)
        num_speakers = config["num_speakers"]
        if num_speakers == 1:
            speaker_id = None  # for now
        else:
            speaker_id = sid
        text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0)
        text_lengths = np.array([text.shape[1]], dtype=np.int64)
        scales = np.array(
            [noise_scale, length_scale, noise_scale_w],
            dtype=np.float32,
        )
        sid = None
        if speaker_id is not None:
            sid = np.array([speaker_id], dtype=np.int64)  # Ensure sid is a 1D array
        audio = model.run(
            None,
            {
                "input": text,
                "input_lengths": text_lengths,
                "scales": scales,
                "sid": sid,
            },
        )[0].squeeze((0, 1))
        audio = audio_float_to_int16(audio.squeeze())
        audios.append(audio)
    merged_audio = np.concatenate(audios)
    sample_rate = config["audio"]["sample_rate"]
    temp_audio_path = os.path.join(tempfile.gettempdir(), "generated_audio.wav")
    sf.write(temp_audio_path, merged_audio, config["audio"]["sample_rate"])
    audio = AudioSegment.from_mp3(temp_audio_path)
    return audio
#    return FileResponse(temp_audio_path)
    # Return the audio file as a FastAPI response
  #  display(Markdown(f"{line}"))
   # display(Audio(merged_audio, rate=sample_rate, autoplay=auto_play))

def denoise(
    audio: np.ndarray, bias_spec: np.ndarray, denoiser_strength: float
) -> np.ndarray:
    audio_spec, audio_angles = transform(audio)

    a = bias_spec.shape[-1]
    b = audio_spec.shape[-1]
    repeats = max(1, math.ceil(b / a))
    bias_spec_repeat = np.repeat(bias_spec, repeats, axis=-1)[..., :b]

    audio_spec_denoised = audio_spec - (bias_spec_repeat * denoiser_strength)
    audio_spec_denoised = np.clip(audio_spec_denoised, a_min=0.0, a_max=None)
    audio_denoised = inverse(audio_spec_denoised, audio_angles)

    return audio_denoised


def stft(x, fft_size, hopsamp):
    """Compute and return the STFT of the supplied time domain signal x.
    Args:
        x (1-dim Numpy array): A time domain signal.
        fft_size (int): FFT size. Should be a power of 2, otherwise DFT will be used.
        hopsamp (int):
    Returns:
        The STFT. The rows are the time slices and columns are the frequency bins.
    """
    window = np.hanning(fft_size)
    fft_size = int(fft_size)
    hopsamp = int(hopsamp)
    return np.array(
        [
            np.fft.rfft(window * x[i : i + fft_size])
            for i in range(0, len(x) - fft_size, hopsamp)
        ]
    )


def istft(X, fft_size, hopsamp):
    """Invert a STFT into a time domain signal.
    Args:
        X (2-dim Numpy array): Input spectrogram. The rows are the time slices and columns are the frequency bins.
        fft_size (int):
        hopsamp (int): The hop size, in samples.
    Returns:
        The inverse STFT.
    """
    fft_size = int(fft_size)
    hopsamp = int(hopsamp)
    window = np.hanning(fft_size)
    time_slices = X.shape[0]
    len_samples = int(time_slices * hopsamp + fft_size)
    x = np.zeros(len_samples)
    for n, i in enumerate(range(0, len(x) - fft_size, hopsamp)):
        x[i : i + fft_size] += window * np.real(np.fft.irfft(X[n]))
    return x


def inverse(magnitude, phase):
    recombine_magnitude_phase = np.concatenate(
        [magnitude * np.cos(phase), magnitude * np.sin(phase)], axis=1
    )

    x_org = recombine_magnitude_phase
    n_b, n_f, n_t = x_org.shape  # pylint: disable=unpacking-non-sequence
    x = np.empty([n_b, n_f // 2, n_t], dtype=np.complex64)
    x.real = x_org[:, : n_f // 2]
    x.imag = x_org[:, n_f // 2 :]
    inverse_transform = []
    for y in x:
        y_ = istft(y.T, fft_size=1024, hopsamp=256)
        inverse_transform.append(y_[None, :])

    inverse_transform = np.concatenate(inverse_transform, 0)

    return inverse_transform


def transform(input_data):
    x = input_data
    real_part = []
    imag_part = []
    for y in x:
        y_ = stft(y, fft_size=1024, hopsamp=256).T
        real_part.append(y_.real[None, :, :])  # pylint: disable=unsubscriptable-object
        imag_part.append(y_.imag[None, :, :])  # pylint: disable=unsubscriptable-object
    real_part = np.concatenate(real_part, 0)
    imag_part = np.concatenate(imag_part, 0)

    magnitude = np.sqrt(real_part**2 + imag_part**2)
    phase = np.arctan2(imag_part.data, real_part.data)

    return magnitude, phase



#@app.get("/")
#async def read_root(request: Request):
#   return templates.TemplateResponse("interface.html", {"request": request})

if __name__ == "__main__":
 #   main()
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)
#    main()
#    pass
   # app()  
    
# Create an instance of the FastAPI class
#app = main()

# Define a route for the root endpoint

#def read_root():
#  return {"message": "Hello, World!"}