Spaces:
Running
Running
File size: 18,955 Bytes
0c3ae0b 3b561b2 0c43594 c99413a 0c43594 3b561b2 59005cf e84b34f 92a9cde d28b080 a3a78ff 0dcd7ee 2db93aa 7ab98f2 2db93aa 0dcd7ee e84b34f 953a75a e84b34f 7ab98f2 e84b34f 888d297 0dcd7ee e84b34f 05c5e6f 6eef917 e84b34f fcc3f8c 780b581 a8be640 780b581 8adced8 fb47690 8adced8 5446ba7 f3a2a3b 06f3d1a 80162ec e47f71a 953a75a 06f3d1a f3a2a3b 7de3c3d 21163f7 dce78d4 780b581 dce78d4 7b6d324 21163f7 ed3cf42 bf6e615 0c43594 47557e6 9f23b12 66c74b5 2f5c596 9f23b12 5446ba7 bf6e615 ed3cf42 bf6e615 58187c4 fc031f9 58187c4 1b9314f 58187c4 caf7c50 58187c4 fc66451 311bb00 fc66451 311bb00 fc66451 1b010e9 1b9314f d4a1f1c bc7cf62 d4a1f1c bc7cf62 8c2cb95 5288ae8 da3c393 5288ae8 07e31be 5288ae8 1b9314f 8c2cb95 fbe764d 3e91c45 fbe764d 5bba7ff dd6cf58 fbe764d 3e91c45 4d878ba dd6cf58 fc031f9 a8be640 3e91c45 691f5ff caf7c50 a8be640 fc66451 4d878ba dd6cf58 5288ae8 e149b71 6185ee4 3d587bf fae63ed 2cafbec fc66451 6185ee4 1921882 fc66451 d0d6bb3 6185ee4 107b5f4 caf7c50 07e31be e13e1dd 07e31be 311bb00 d0d6bb3 92a9cde 07e31be 107b5f4 da3c393 e39ced4 bae184f e39ced4 bae184f 5e2a8be d295852 107b5f4 e39ced4 d295852 9a2b0d8 107b5f4 de9677f e39ced4 09b7ce7 906a82c 268fc4f 58187c4 ed3cf42 58187c4 ed3cf42 58187c4 f6168ab e23953c 58187c4 c62c988 42063fc e23953c 58187c4 e23953c 58187c4 e23953c 58187c4 e23953c 58187c4 e23953c 58187c4 09b7ce7 5e2a8be 58187c4 f3a2a3b e84b34f 5e2a8be b72f6c5 50ec890 b72f6c5 6db6a42 0c43594 9f23b12 f3a2a3b 03deed5 f3a2a3b 0c43594 03deed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
enhanced_accessibility = False #@param {type:"boolean"}
#@markdown ---
#@markdown #### Please select your language:
#lang_select = "English" #@param ["English", "Spanish"]
#if lang_select == "English":
# lang = "en"
#elif lang_select == "Spanish":
# lang = "es"
#else:
# raise Exception("Language not supported.")
#@markdown ---
use_gpu = False #@param {type:"boolean"}
from fastapi import FastAPI, Request, Form
from fastapi.responses import HTMLResponse
from fastapi.responses import FileResponse
from fastapi.templating import Jinja2Templates
from fastapi.staticfiles import StaticFiles
# ...
# Mount a directory to serve static files (e.g., CSS and JavaScript)
import logging
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
files = {}
# Configure logging
logging.basicConfig(level=logging.DEBUG)
# Mock data for your interface
data = {
"speaker_options": ["en","en-us","en-029","n-gb-x-gbclan","en-gb-x-rp","en-gb-scotland","en-gb-gbcwmd", "es", "de", "pl","ar","be","bn","bpy","bs","bg","ca","yue","hak","haw","cmn","hr","cs","da","nl","eo","et","fa","fa-latn","fi","fr-be","fr","ga","gd","ka","grc","el","kl","gn","gu","ht","he","hi","hu","id","io","it","ja","kn","kok","ko","ku","kk","ky","la","lb","ltg","lv","lfn","lt","jbo","mi","mk","ms","ml","mt","mr","nci","ne","nb","nog","or","om","pap","pt-br","pt","ro","ru","ru-lv","uk","sjn","sr","tn","sd","shn","si","sk","sl","es","es-419","sw","sv","ta","th","tk","tt","te","tr","ug","ur","uz","vi-vn-x-central","vi","vi0vn-x-south"],
"default_speaker": "en",
}
# Define a dictionary to store model configurations
model_configurations = {}
# Define global variables
onnx_models = [] # A list to store model names
onnx_configs = []
speaker_id_map = {
"speaker1": "Speaker 1 Name",
"speaker2": "Speaker 2 Name",
# Add more speaker IDs and names as needed
}
import logging
import math
import sys
from pathlib import Path
from enum import Enum
from typing import Iterable, List, Optional, Union
import numpy as np
import onnxruntime
import glob
#import ipywidgets as widgets
from pydub import AudioSegment
import tempfile
import uuid
import soundfile as sf
#from IPython.display import display, Audio, Markdown, clear_output
from piper_phonemize import phonemize_codepoints, phonemize_espeak, tashkeel_run
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
# You should populate data and model_configurations here
# Make sure speaker_id_map is defined and populated correctly
# data = {"your_data_key": "your_data_value"} # Replace with your data
# model_configurations = {} # Replace with your model configurations
# Ensure that speaker_id_map is included in the context
return templates.TemplateResponse("interface.html", {"request": request, "data": data, "model_names": onnx_models, "speaker_id_map": speaker_id_map})
import json
_LOGGER = logging.getLogger("piper_train.infer_onnx")
import os
#if not os.path.exists("./content/piper/src/python/lng"):
# import subprocess
# command = "cp -r ./content/piper/notebooks/lng ./content/piper/src/python/lng"
# subprocess.run(command, shell=True)
import sys
#sys.path.append('/content/piper/notebooks')
sys.path.append('./content/piper/src/python')
import configparser
class Translator:
def __init__(self):
self.configs = {}
def load_language(self, language_name):
if language_name not in self.configs:
config = configparser.ConfigParser()
config.read(os.path.join(os.getcwd(), "lng", f"{language_name}.lang"))
self.configs[language_name] = config
def translate(self, language_name, string):
if language_name == "en":
return string
elif language_name not in self.configs:
self.load_language(language_name)
config = self.configs[language_name]
try:
return config.get("Strings", string)
except (configparser.NoOptionError, configparser.NoSectionError):
if string:
return string
else:
raise Exception("language engine error: This translation is corrupt!")
return 0
#from translator import *
lan = Translator()
def detect_onnx_models(path):
onnx_models = glob.glob(path + '/*.onnx')
onnx_configs = glob.glob(path + '/*.json')
if len(onnx_models) > 1:
return onnx_models, onnx_configs # Return both lists as a tuple
elif len(onnx_models) == 1:
return onnx_models[0], onnx_configs[0]
else:
return None
# Define a dependency function to get the selected_model and selected_speaker_id on startup
def get_initial_values():
# You can set default values or load them from a configuration file here
selected_model = onnx_models[0] if onnx_models else "default_model"
selected_speaker_id = 0 # Default value
# Check if there are onnx models and load the speaker_id_map from the first model's config
if onnx_models:
first_model_config = model_configurations.get(onnx_models[0])
if first_model_config:
speaker_id_map = first_model_config.get("speaker_id_map")
if speaker_id_map:
selected_speaker_id = next(iter(speaker_id_map)) # Get the first speaker_id
else:
selected_speaker_id = 0
return selected_model, selected_speaker_id
@app.get("/get_speaker_id_map")
async def get_speaker_id_map(selected_model: str):
config = model_configurations.get(selected_model + ".json")
if config:
speaker_id_map = config.get("speaker_id_map", {})
if not speaker_id_map:
# Assign a default value to speaker_id_map if it's empty
speaker_id_map = {"speaker1": "0"}
return {"speaker_id_map": speaker_id_map}
# Handle the case where the config is not available for the selected model
return {"speaker_id_map": {}}
@app.on_event("startup")
async def load_model_data():
global config_names, onnx_models, model_configurations, models_path # Make onnx_models, model_configurations, and models_path available globally
# Load data for all models in the directory upon startup
sys.path.append('./content/piper/src/python')
models_path = "./content/piper/src/python"
logging.basicConfig(level=logging.DEBUG)
# Collect data for all models in the directory and populate model_configurations
model_names, config_names = detect_onnx_models(models_path)
onnx_models = model_names # Populate onnx_models here
for config_name in config_names:
# Load the configuration data for each model (including speaker_id_map)
config = load_model_configuration(models_path, config_name) # Pass config_name, not models_path
if config:
model_configurations[config_name] = config
def load_model_configuration(models_path, config_name):
# Assuming config_name is the name of the JSON configuration file, e.g., 'model.json'
config_file_path = os.path.join("", config_name)
try:
with open(config_file_path, 'r') as config_file:
config_data = json.load(config_file)
return config_data
except FileNotFoundError:
# Handle the case where the configuration file does not exist
return None
except IsADirectoryError:
# Handle the case where config_name is a directory (not a file)
return None
# Define a dependency function to get the selected_model and selected_speaker_id on startup
def get_initial_values() -> Tuple[str, str]:
# You can set default values or load them from a configuration file here
selected_model = onnx_models[0] if onnx_models else "default_model"
selected_speaker_id = "default_speaker_id" # Default value
# Check if there are onnx models and load the speaker_id_map from the first model's config
if onnx_models:
first_model_config = model_configurations.get(onnx_models[0])
if first_model_config:
speaker_id_map = first_model_config.get("speaker_id_map")
if speaker_id_map:
selected_speaker_id = next(iter(speaker_id_map)) # Get the first speaker_id
return selected_model, selected_speaker_id
@app.post("/", response_class=HTMLResponse)
async def main(
request: Request,
text_input: str = Form(default="1, 2, 3. This is a test. Enter some text to generate."),
selected_model: str = Form(...), # Selected model
selected_speaker_id: str = Form(...), # Selected speaker ID
speaker: str = Form(...),
speed_slider: float = Form(...),
noise_scale_slider: float = Form(...),
noise_scale_w_slider: float = Form(...),
play: bool = Form(True),
# initial_values: Tuple[str, str] = Depends(get_initial_values) # Use the dependency here
):
# ... (previous code)
if selected_model in onnx_models:
# model_name = selected_model
# onnx_model = selected_model # Replace with the actual key for your ONNX model file
providers = ["CPUExecutionProvider"
if use_gpu is False
else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"})
]
sess_options = onnxruntime.SessionOptions()
model, config = load_onnx(selected_model, sess_options, providers)
config["espeak"]["voice"] = speaker
# speaker_id_map = config.get("speaker_id_map", {})
print(text_input)
print(speaker)
auto_play = play
audio = inferencing(model, config, selected_speaker_id, text_input, speed_slider, noise_scale_slider, noise_scale_w_slider, auto_play)
temp_dir = tempfile.mkdtemp()
renamed_audio_file = os.path.join(temp_dir, "download.mp3")
audio.export(renamed_audio_file, format="mp3")
# Generate a unique file ID
file_id = str(uuid.uuid4())
# Store the file path with the generated file ID
files[file_id] = renamed_audio_file
# Create a URL to download the file
file_url = f'/download?fileId={file_id}'
# Restore the form and return the response
response_html = """
<script>
document.getElementById("loading-message").innerText = "Audio generated successfully!";
document.getElementById("synthesize_button").disabled = false;
</script>
"""
else:
# The selected_model is not found in the list; handle this case as needed
# You can show an error message or handle it differently
response_html = """
<div id="error-message">Selected model not found.</div>
<script>
document.getElementById("synthesize_button").disabled = true;
</script>
"""
# Pass the necessary data to the HTML template, including speaker_id_map
return templates.TemplateResponse("interface.html", {
"request": request,
"file_url": file_url,
"text_input": text_input,
"data": data,
"selected_model": selected_model,
"model_names": onnx_models,
"selected_model": selected_model,
"selected_speaker_id": selected_speaker_id,
"speaker_id_map": speaker_id_map, # Make sure speaker_id_map is included here
"dynamic_content": response_html
})
@app.get("/download")
async def download_file(fileId: str):
# Retrieve the file path from the dictionary using the file ID
filepath = files.get(fileId)
if filepath:
# Create a FileResponse to serve the file for download
return FileResponse(filepath, headers={"Content-Disposition": "attachment"})
else:
return {"error": "File not found"}
def load_onnx(model, sess_options, providers = ["CPUExecutionProvider"]):
_LOGGER.debug("Loading model from %s", model)
config = load_config(model)
model = onnxruntime.InferenceSession(
str(model),
sess_options=sess_options,
providers= providers
)
_LOGGER.info("Loaded model from %s", model)
return model, config
def load_config(model):
with open(f"{model}.json", "r") as file:
config = json.load(file)
return config
PAD = "_" # padding (0)
BOS = "^" # beginning of sentence
EOS = "$" # end of sentence
class PhonemeType(str, Enum):
ESPEAK = "espeak"
TEXT = "text"
def phonemize(config, text: str) -> List[List[str]]:
"""Text to phonemes grouped by sentence."""
if config["phoneme_type"] == PhonemeType.ESPEAK:
if config["espeak"]["voice"] == "ar":
# Arabic diacritization
# https://github.com/mush42/libtashkeel/
text = tashkeel_run(text)
return phonemize_espeak(text, config["espeak"]["voice"])
if config["phoneme_type"] == PhonemeType.TEXT:
return phonemize_codepoints(text)
raise ValueError(f'Unexpected phoneme type: {config["phoneme_type"]}')
def phonemes_to_ids(config, phonemes: List[str]) -> List[int]:
"""Phonemes to ids."""
id_map = config["phoneme_id_map"]
ids: List[int] = list(id_map[BOS])
for phoneme in phonemes:
if phoneme not in id_map:
print("Missing phoneme from id map: %s", phoneme)
continue
ids.extend(id_map[phoneme])
ids.extend(id_map[PAD])
ids.extend(id_map[EOS])
return ids
def audio_float_to_int16(
audio: np.ndarray, max_wav_value: float = 32767.0
) -> np.ndarray:
"""Normalize audio and convert to int16 range"""
audio_norm = audio * (max_wav_value / max(0.01, np.max(np.abs(audio))))
audio_norm = np.clip(audio_norm, -max_wav_value, max_wav_value)
audio_norm = audio_norm.astype("int16")
return audio_norm
def inferencing(model, config, sid, line, length_scale, noise_scale, noise_scale_w, auto_play=True):
audios = []
# Check if 'phoneme_type' exists in the config dictionary
phoneme_type = config.get("phoneme_type", PhonemeType.ESPEAK.value)
# Fix applied here
if phoneme_type == PhonemeType.ESPEAK.value:
config["phoneme_type"] = "espeak"
text = phonemize(config, line)
for phonemes in text:
phoneme_ids = phonemes_to_ids(config, phonemes)
num_speakers = config["num_speakers"]
if num_speakers == 1:
speaker_id = None # for now
else:
speaker_id = sid
text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0)
text_lengths = np.array([text.shape[1]], dtype=np.int64)
scales = np.array(
[noise_scale, length_scale, noise_scale_w],
dtype=np.float32,
)
sid = None
if speaker_id is not None:
sid = np.asarray([int(speaker_id)], dtype=np.int64) # Convert to 1D array
audio = model.run(
None,
{
"input": text,
"input_lengths": text_lengths,
"scales": scales,
"sid": sid,
},
)[0].squeeze((0, 1))
audio = audio_float_to_int16(audio.squeeze())
audios.append(audio)
merged_audio = np.concatenate(audios)
sample_rate = config["audio"]["sample_rate"]
temp_audio_path = os.path.join(tempfile.gettempdir(), "generated_audio.wav")
sf.write(temp_audio_path, merged_audio, config["audio"]["sample_rate"])
audio = AudioSegment.from_mp3(temp_audio_path)
return audio
def denoise(
audio: np.ndarray, bias_spec: np.ndarray, denoiser_strength: float
) -> np.ndarray:
audio_spec, audio_angles = transform(audio)
a = bias_spec.shape[-1]
b = audio_spec.shape[-1]
repeats = max(1, math.ceil(b / a))
bias_spec_repeat = np.repeat(bias_spec, repeats, axis=-1)[..., :b]
audio_spec_denoised = audio_spec - (bias_spec_repeat * denoiser_strength)
audio_spec_denoised = np.clip(audio_spec_denoised, a_min=0.0, a_max=None)
audio_denoised = inverse(audio_spec_denoised, audio_angles)
return audio_denoised
def stft(x, fft_size, hopsamp):
"""Compute and return the STFT of the supplied time domain signal x.
Args:
x (1-dim Numpy array): A time domain signal.
fft_size (int): FFT size. Should be a power of 2, otherwise DFT will be used.
hopsamp (int):
Returns:
The STFT. The rows are the time slices and columns are the frequency bins.
"""
window = np.hanning(fft_size)
fft_size = int(fft_size)
hopsamp = int(hopsamp)
return np.array(
[
np.fft.rfft(window * x[i : i + fft_size])
for i in range(0, len(x) - fft_size, hopsamp)
]
)
def istft(X, fft_size, hopsamp):
"""Invert a STFT into a time domain signal.
Args:
X (2-dim Numpy array): Input spectrogram. The rows are the time slices and columns are the frequency bins.
fft_size (int):
hopsamp (int): The hop size, in samples.
Returns:
The inverse STFT.
"""
fft_size = int(fft_size)
hopsamp = int(hopsamp)
window = np.hanning(fft_size)
time_slices = X.shape[0]
len_samples = int(time_slices * hopsamp + fft_size)
x = np.zeros(len_samples)
for n, i in enumerate(range(0, len(x) - fft_size, hopsamp)):
x[i : i + fft_size] += window * np.real(np.fft.irfft(X[n]))
return x
def inverse(magnitude, phase):
recombine_magnitude_phase = np.concatenate(
[magnitude * np.cos(phase), magnitude * np.sin(phase)], axis=1
)
x_org = recombine_magnitude_phase
n_b, n_f, n_t = x_org.shape # pylint: disable=unpacking-non-sequence
x = np.empty([n_b, n_f // 2, n_t], dtype=np.complex64)
x.real = x_org[:, : n_f // 2]
x.imag = x_org[:, n_f // 2 :]
inverse_transform = []
for y in x:
y_ = istft(y.T, fft_size=1024, hopsamp=256)
inverse_transform.append(y_[None, :])
inverse_transform = np.concatenate(inverse_transform, 0)
return inverse_transform
def transform(input_data):
x = input_data
real_part = []
imag_part = []
for y in x:
y_ = stft(y, fft_size=1024, hopsamp=256).T
real_part.append(y_.real[None, :, :]) # pylint: disable=unsubscriptable-object
imag_part.append(y_.imag[None, :, :]) # pylint: disable=unsubscriptable-object
real_part = np.concatenate(real_part, 0)
imag_part = np.concatenate(imag_part, 0)
magnitude = np.sqrt(real_part**2 + imag_part**2)
phase = np.arctan2(imag_part.data, real_part.data)
return magnitude, phase
#@app.get("/")
#async def read_root(request: Request):
# return templates.TemplateResponse("interface.html", {"request": request})
if __name__ == "__main__":
# main()
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
# main()
# pass
# app()
# Create an instance of the FastAPI class
#app = main()
# Define a route for the root endpoint
#def read_root():
# return {"message": "Hello, World!"} |