Spaces:
Running
Running
enhanced_accessibility = False #@param {type:"boolean"} | |
#@markdown --- | |
#@markdown #### Please select your language: | |
#lang_select = "English" #@param ["English", "Spanish"] | |
#if lang_select == "English": | |
# lang = "en" | |
#elif lang_select == "Spanish": | |
# lang = "es" | |
#else: | |
# raise Exception("Language not supported.") | |
#@markdown --- | |
use_gpu = False #@param {type:"boolean"} | |
from fastapi import FastAPI, Request, Form | |
from fastapi.responses import HTMLResponse | |
from fastapi.responses import FileResponse | |
from fastapi.templating import Jinja2Templates | |
from fastapi.staticfiles import StaticFiles | |
# ... | |
# Mount a directory to serve static files (e.g., CSS and JavaScript) | |
import logging | |
app = FastAPI() | |
app.mount("/static", StaticFiles(directory="static"), name="static") | |
templates = Jinja2Templates(directory="templates") | |
files = {} | |
# Configure logging | |
logging.basicConfig(level=logging.DEBUG) | |
# Mock data for your interface | |
data = { | |
"speaker_options": ["en","en-us","en-029","n-gb-x-gbclan","en-gb-x-rp","en-gb-scotland","en-gb-gbcwmd", "es", "de", "pl","ar","be","bn","bpy","bs","bg","ca","yue","hak","haw","cmn","hr","cs","da","nl","eo","et","fa","fa-latn","fi","fr-be","fr","ga","gd","ka","grc","el","kl","gn","gu","ht","he","hi","hu","id","io","it","ja","kn","kok","ko","ku","kk","ky","la","lb","ltg","lv","lfn","lt","jbo","mi","mk","ms","ml","mt","mr","nci","ne","nb","nog","or","om","pap","pt-br","pt","ro","ru","ru-lv","uk","sjn","sr","tn","sd","shn","si","sk","sl","es","es-419","sw","sv","ta","th","tk","tt","te","tr","ug","ur","uz","vi-vn-x-central","vi","vi0vn-x-south"], | |
"default_speaker": "en", | |
} | |
async def read_root(request: Request): | |
return templates.TemplateResponse("interface.html", {"request": request, "data": data}) | |
import json | |
import logging | |
import math | |
import sys | |
from pathlib import Path | |
from enum import Enum | |
from typing import Iterable, List, Optional, Union | |
import numpy as np | |
import onnxruntime | |
import glob | |
#import ipywidgets as widgets | |
from pydub import AudioSegment | |
import tempfile | |
import uuid | |
import soundfile as sf | |
#from IPython.display import display, Audio, Markdown, clear_output | |
from piper_phonemize import phonemize_codepoints, phonemize_espeak, tashkeel_run | |
_LOGGER = logging.getLogger("piper_train.infer_onnx") | |
import os | |
#if not os.path.exists("./content/piper/src/python/lng"): | |
# import subprocess | |
# command = "cp -r ./content/piper/notebooks/lng ./content/piper/src/python/lng" | |
# subprocess.run(command, shell=True) | |
import sys | |
#sys.path.append('/content/piper/notebooks') | |
sys.path.append('./content/piper/src/python') | |
import configparser | |
class Translator: | |
def __init__(self): | |
self.configs = {} | |
def load_language(self, language_name): | |
if language_name not in self.configs: | |
config = configparser.ConfigParser() | |
config.read(os.path.join(os.getcwd(), "lng", f"{language_name}.lang")) | |
self.configs[language_name] = config | |
def translate(self, language_name, string): | |
if language_name == "en": | |
return string | |
elif language_name not in self.configs: | |
self.load_language(language_name) | |
config = self.configs[language_name] | |
try: | |
return config.get("Strings", string) | |
except (configparser.NoOptionError, configparser.NoSectionError): | |
if string: | |
return string | |
else: | |
raise Exception("language engine error: This translation is corrupt!") | |
return 0 | |
#from translator import * | |
lan = Translator() | |
def detect_onnx_models(path): | |
onnx_models = glob.glob(path + '/*.onnx') | |
if len(onnx_models) > 1: | |
return onnx_models | |
elif len(onnx_models) == 1: | |
return onnx_models[0] | |
else: | |
return None | |
renamed_audio_file = None | |
#@app.post("/synthesize") | |
#@app.post("/", response_class=FileResponse) | |
async def main( | |
request: Request, | |
text_input: str = Form(...), | |
speaker: str = Form(...), | |
speed_slider: float = Form(1.0), | |
noise_scale_slider: float = Form(0.667), | |
noise_scale_w_slider: float = Form(1.0), | |
play: bool = Form(True) | |
): | |
"""Main entry point""" | |
sys.path.append('./content/piper/src/python') | |
models_path = "./content/piper/src/python" | |
logging.basicConfig(level=logging.DEBUG) | |
providers = [ | |
"CPUExecutionProvider" | |
if use_gpu is False | |
else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"}) | |
] | |
sess_options = onnxruntime.SessionOptions() | |
model = None | |
lang = speaker | |
onnx_models = detect_onnx_models(models_path) | |
if len(text_input) == 0: | |
text_input = "1, 2, 3. This is a test. Enter some text to generate." | |
# speaker_selection = widgets.Dropdown( | |
# options=[], | |
# description=f'{lan.translate(lang, "Select speaker")}:', | |
# layout={'visibility': 'hidden'} | |
# ) | |
if onnx_models is None: | |
if enhanced_accessibility: | |
playaudio("novoices") | |
raise Exception(lan.translate(lang, "No downloaded voice packages!")) | |
elif isinstance(onnx_models, str): | |
onnx_model = onnx_models | |
model, config = load_onnx(onnx_model, sess_options, providers) | |
config["espeak"]["voice"] = speaker | |
config["inference"]["noise_scale"] = noise_scale_slider | |
config["inference"]["length_scale"] = speed_slider | |
config["inference"]["noise_w"] = noise_scale_w_slider | |
# lan.load_language(speaker) | |
print("nuber of speakers = ", config["num_speakers"]) | |
print("speaker", speaker) | |
print("language", config["espeak"]["voice"]) | |
# rate = speed_slider.value | |
# noise_scale = noise_scale_slider.value | |
# noise_scale_w = noise_scale_w_slider.value | |
auto_play = play | |
audio = inferencing(model, config, 1, text_input, speed_slider, noise_scale_slider, noise_scale_w_slider, auto_play) | |
temp_dir = tempfile.mkdtemp() | |
# Create a temporary directory to store the audio files | |
#temp_dir = tempfile.mkdtemp() | |
# Export the audio to an MP3 file in the temporary directory | |
# temp_audio_file = os.path.join(temp_dir, "generated_audio.mp3") | |
# Check if text_input is more than 200 characters | |
if len(text_input) > 200: | |
# Truncate text_input to 200 characters | |
text_input = text_input[:200] | |
# Rename the audio file based on the text input | |
renamed_audio_file = os.path.join(temp_dir, f"{text_input}.mp3") | |
audio.export(renamed_audio_file, format="mp3") | |
# Save the generated audio as a temporary file | |
filepath = renamed_audio_file | |
# Generate a unique file ID | |
file_id = str(uuid.uuid4()) | |
# Store the file path with the generated file ID | |
files[file_id] = filepath | |
# Create a URL to download the file | |
file_url = f'/download?fileId={file_id}' | |
# os.rename(temp_audio_file, renamed_audio_file) | |
# Specify the path to your MP3 audio file | |
# audio_file_path = "path/to/your/audio.mp3" | |
# Check if the file exists | |
# if not os.path.exists(audio_file_path): | |
# return {"detail": "Audio file not found"} | |
# temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") | |
# audio.export(temp_audio_file.name, format="mp3") | |
# Rename the temporary audio file based on the text input | |
# global renamed_audio_file | |
# renamed_audio_file = os.path.join(tempfile.gettempdir(), f"{text_input}.mp3") | |
# os.rename(temp_audio_file.name, renamed_audio_file) | |
else: | |
voice_model_names = [] | |
for current in onnx_models: | |
voice_struct = current.split("/")[5] | |
voice_model_names.append(voice_struct) | |
# if enhanced_accessibility: | |
# playaudio("selectmodel") | |
# selection = widgets.Dropdown( | |
# options=voice_model_names, | |
# description=f'{lan.translate(lang, "Select voice package")}:', | |
# ) | |
# load_btn = widgets.Button( | |
# description=lan.translate(lang, "Load it!") | |
# ) | |
# config = None | |
# def load_model(button): | |
# nonlocal config | |
# global onnx_model | |
# nonlocal model | |
# nonlocal models_path | |
# selected_voice = selection.value | |
# onnx_model = f"{models_path}/{selected_voice}" | |
# model, config = load_onnx(onnx_model, sess_options, providers) | |
# if enhanced_accessibility: | |
# playaudio("loaded") | |
# if config["num_speakers"] > 1: | |
# speaker_selection.options = config["speaker_id_map"].values() | |
# speaker_selection.layout.visibility = 'visible' | |
# if enhanced_accessibility: | |
# playaudio("multispeaker") | |
# else: | |
# speaker_selection.layout.visibility = 'hidden' | |
# load_btn.on_click(load_model) | |
# display(selection, load_btn) | |
# display(speaker_selection) | |
# Save the audio as a temporary WAV file | |
return templates.TemplateResponse("interface.html", {"request": request, "file_url": file_url, "data": data}) | |
# Serve the audio file with the correct media type | |
# return FileResponse(renamed_audio_file) | |
# return {"message": f"Text to synthesize: {text_input}, Speed: {speed_slider}, Play: {play}"} | |
async def download_file(fileId: str): | |
# Retrieve the file path from the dictionary using the file ID | |
filepath = files.get(fileId) | |
if filepath: | |
# Create a FileResponse to serve the file for download | |
return FileResponse(filepath, headers={"Content-Disposition": "attachment"}) | |
else: | |
return {"error": "File not found"} | |
def load_onnx(model, sess_options, providers = ["CPUExecutionProvider"]): | |
_LOGGER.debug("Loading model from %s", model) | |
config = load_config(model) | |
model = onnxruntime.InferenceSession( | |
str(model), | |
sess_options=sess_options, | |
providers= providers | |
) | |
_LOGGER.info("Loaded model from %s", model) | |
return model, config | |
def load_config(model): | |
with open(f"{model}.json", "r") as file: | |
config = json.load(file) | |
return config | |
PAD = "_" # padding (0) | |
BOS = "^" # beginning of sentence | |
EOS = "$" # end of sentence | |
class PhonemeType(str, Enum): | |
ESPEAK = "espeak" | |
TEXT = "text" | |
def phonemize(config, text: str) -> List[List[str]]: | |
"""Text to phonemes grouped by sentence.""" | |
if config["phoneme_type"] == PhonemeType.ESPEAK: | |
if config["espeak"]["voice"] == "ar": | |
# Arabic diacritization | |
# https://github.com/mush42/libtashkeel/ | |
text = tashkeel_run(text) | |
return phonemize_espeak(text, config["espeak"]["voice"]) | |
if config["phoneme_type"] == PhonemeType.TEXT: | |
return phonemize_codepoints(text) | |
raise ValueError(f'Unexpected phoneme type: {config["phoneme_type"]}') | |
def phonemes_to_ids(config, phonemes: List[str]) -> List[int]: | |
"""Phonemes to ids.""" | |
id_map = config["phoneme_id_map"] | |
ids: List[int] = list(id_map[BOS]) | |
for phoneme in phonemes: | |
if phoneme not in id_map: | |
print("Missing phoneme from id map: %s", phoneme) | |
continue | |
ids.extend(id_map[phoneme]) | |
ids.extend(id_map[PAD]) | |
ids.extend(id_map[EOS]) | |
return ids | |
def audio_float_to_int16( | |
audio: np.ndarray, max_wav_value: float = 32767.0 | |
) -> np.ndarray: | |
"""Normalize audio and convert to int16 range""" | |
audio_norm = audio * (max_wav_value / max(0.01, np.max(np.abs(audio)))) | |
audio_norm = np.clip(audio_norm, -max_wav_value, max_wav_value) | |
audio_norm = audio_norm.astype("int16") | |
return audio_norm | |
def inferencing(model, config, sid, line, length_scale, noise_scale, noise_scale_w, auto_play=True): | |
audios = [] | |
if config["phoneme_type"] == "PhonemeType.ESPEAK": | |
config["phoneme_type"] = "espeak" | |
text = phonemize(config, line) | |
for phonemes in text: | |
phoneme_ids = phonemes_to_ids(config, phonemes) | |
num_speakers = config["num_speakers"] | |
if num_speakers == 1: | |
speaker_id = None # for now | |
else: | |
speaker_id = sid | |
text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0) | |
text_lengths = np.array([text.shape[1]], dtype=np.int64) | |
scales = np.array( | |
[noise_scale, length_scale, noise_scale_w], | |
dtype=np.float32, | |
) | |
sid = None | |
if speaker_id is not None: | |
sid = np.array([speaker_id], dtype=np.int64) | |
audio = model.run( | |
None, | |
{ | |
"input": text, | |
"input_lengths": text_lengths, | |
"scales": scales, | |
"sid": sid, | |
}, | |
)[0].squeeze((0, 1)) | |
audio = audio_float_to_int16(audio.squeeze()) | |
audios.append(audio) | |
merged_audio = np.concatenate(audios) | |
sample_rate = config["audio"]["sample_rate"] | |
temp_audio_path = os.path.join(tempfile.gettempdir(), "generated_audio.wav") | |
sf.write(temp_audio_path, merged_audio, config["audio"]["sample_rate"]) | |
audio = AudioSegment.from_mp3(temp_audio_path) | |
return audio | |
# return FileResponse(temp_audio_path) | |
# Return the audio file as a FastAPI response | |
# display(Markdown(f"{line}")) | |
# display(Audio(merged_audio, rate=sample_rate, autoplay=auto_play)) | |
def denoise( | |
audio: np.ndarray, bias_spec: np.ndarray, denoiser_strength: float | |
) -> np.ndarray: | |
audio_spec, audio_angles = transform(audio) | |
a = bias_spec.shape[-1] | |
b = audio_spec.shape[-1] | |
repeats = max(1, math.ceil(b / a)) | |
bias_spec_repeat = np.repeat(bias_spec, repeats, axis=-1)[..., :b] | |
audio_spec_denoised = audio_spec - (bias_spec_repeat * denoiser_strength) | |
audio_spec_denoised = np.clip(audio_spec_denoised, a_min=0.0, a_max=None) | |
audio_denoised = inverse(audio_spec_denoised, audio_angles) | |
return audio_denoised | |
def stft(x, fft_size, hopsamp): | |
"""Compute and return the STFT of the supplied time domain signal x. | |
Args: | |
x (1-dim Numpy array): A time domain signal. | |
fft_size (int): FFT size. Should be a power of 2, otherwise DFT will be used. | |
hopsamp (int): | |
Returns: | |
The STFT. The rows are the time slices and columns are the frequency bins. | |
""" | |
window = np.hanning(fft_size) | |
fft_size = int(fft_size) | |
hopsamp = int(hopsamp) | |
return np.array( | |
[ | |
np.fft.rfft(window * x[i : i + fft_size]) | |
for i in range(0, len(x) - fft_size, hopsamp) | |
] | |
) | |
def istft(X, fft_size, hopsamp): | |
"""Invert a STFT into a time domain signal. | |
Args: | |
X (2-dim Numpy array): Input spectrogram. The rows are the time slices and columns are the frequency bins. | |
fft_size (int): | |
hopsamp (int): The hop size, in samples. | |
Returns: | |
The inverse STFT. | |
""" | |
fft_size = int(fft_size) | |
hopsamp = int(hopsamp) | |
window = np.hanning(fft_size) | |
time_slices = X.shape[0] | |
len_samples = int(time_slices * hopsamp + fft_size) | |
x = np.zeros(len_samples) | |
for n, i in enumerate(range(0, len(x) - fft_size, hopsamp)): | |
x[i : i + fft_size] += window * np.real(np.fft.irfft(X[n])) | |
return x | |
def inverse(magnitude, phase): | |
recombine_magnitude_phase = np.concatenate( | |
[magnitude * np.cos(phase), magnitude * np.sin(phase)], axis=1 | |
) | |
x_org = recombine_magnitude_phase | |
n_b, n_f, n_t = x_org.shape # pylint: disable=unpacking-non-sequence | |
x = np.empty([n_b, n_f // 2, n_t], dtype=np.complex64) | |
x.real = x_org[:, : n_f // 2] | |
x.imag = x_org[:, n_f // 2 :] | |
inverse_transform = [] | |
for y in x: | |
y_ = istft(y.T, fft_size=1024, hopsamp=256) | |
inverse_transform.append(y_[None, :]) | |
inverse_transform = np.concatenate(inverse_transform, 0) | |
return inverse_transform | |
def transform(input_data): | |
x = input_data | |
real_part = [] | |
imag_part = [] | |
for y in x: | |
y_ = stft(y, fft_size=1024, hopsamp=256).T | |
real_part.append(y_.real[None, :, :]) # pylint: disable=unsubscriptable-object | |
imag_part.append(y_.imag[None, :, :]) # pylint: disable=unsubscriptable-object | |
real_part = np.concatenate(real_part, 0) | |
imag_part = np.concatenate(imag_part, 0) | |
magnitude = np.sqrt(real_part**2 + imag_part**2) | |
phase = np.arctan2(imag_part.data, real_part.data) | |
return magnitude, phase | |
#@app.get("/") | |
#async def read_root(request: Request): | |
# return templates.TemplateResponse("interface.html", {"request": request}) | |
if __name__ == "__main__": | |
# main() | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |
# main() | |
# pass | |
# app() | |
# Create an instance of the FastAPI class | |
#app = main() | |
# Define a route for the root endpoint | |
#def read_root(): | |
# return {"message": "Hello, World!"} |