Pipertts / app.py
Gregniuki's picture
Update app.py
67e1650
raw
history blame
17.1 kB
enhanced_accessibility = False #@param {type:"boolean"}
#@markdown ---
#@markdown #### Please select your language:
#lang_select = "English" #@param ["English", "Spanish"]
#if lang_select == "English":
# lang = "en"
#elif lang_select == "Spanish":
# lang = "es"
#else:
# raise Exception("Language not supported.")
#@markdown ---
use_gpu = False #@param {type:"boolean"}
from fastapi import FastAPI, Request, Form
from fastapi.responses import HTMLResponse
from fastapi.responses import FileResponse
from fastapi.templating import Jinja2Templates
from fastapi.staticfiles import StaticFiles
# ...
# Mount a directory to serve static files (e.g., CSS and JavaScript)
import logging
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
files = {}
# Configure logging
logging.basicConfig(level=logging.DEBUG)
# Mock data for your interface
data = {
"speaker_options": ["en","en-us","en-029","n-gb-x-gbclan","en-gb-x-rp","en-gb-scotland","en-gb-gbcwmd", "es", "de", "pl","ar","be","bn","bpy","bs","bg","ca","yue","hak","haw","cmn","hr","cs","da","nl","eo","et","fa","fa-latn","fi","fr-be","fr","ga","gd","ka","grc","el","kl","gn","gu","ht","he","hi","hu","id","io","it","ja","kn","kok","ko","ku","kk","ky","la","lb","ltg","lv","lfn","lt","jbo","mi","mk","ms","ml","mt","mr","nci","ne","nb","nog","or","om","pap","pt-br","pt","ro","ru","ru-lv","uk","sjn","sr","tn","sd","shn","si","sk","sl","es","es-419","sw","sv","ta","th","tk","tt","te","tr","ug","ur","uz","vi-vn-x-central","vi","vi0vn-x-south"],
"default_speaker": "en",
}
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
return templates.TemplateResponse("interface.html", {"request": request, "data": data})
import json
import logging
import math
import sys
from pathlib import Path
from enum import Enum
from typing import Iterable, List, Optional, Union
import numpy as np
import onnxruntime
import glob
#import ipywidgets as widgets
from pydub import AudioSegment
import tempfile
import uuid
import soundfile as sf
#from IPython.display import display, Audio, Markdown, clear_output
from piper_phonemize import phonemize_codepoints, phonemize_espeak, tashkeel_run
_LOGGER = logging.getLogger("piper_train.infer_onnx")
import os
#if not os.path.exists("./content/piper/src/python/lng"):
# import subprocess
# command = "cp -r ./content/piper/notebooks/lng ./content/piper/src/python/lng"
# subprocess.run(command, shell=True)
import sys
#sys.path.append('/content/piper/notebooks')
sys.path.append('./content/piper/src/python')
import configparser
class Translator:
def __init__(self):
self.configs = {}
def load_language(self, language_name):
if language_name not in self.configs:
config = configparser.ConfigParser()
config.read(os.path.join(os.getcwd(), "lng", f"{language_name}.lang"))
self.configs[language_name] = config
def translate(self, language_name, string):
if language_name == "en":
return string
elif language_name not in self.configs:
self.load_language(language_name)
config = self.configs[language_name]
try:
return config.get("Strings", string)
except (configparser.NoOptionError, configparser.NoSectionError):
if string:
return string
else:
raise Exception("language engine error: This translation is corrupt!")
return 0
#from translator import *
lan = Translator()
def detect_onnx_models(path):
onnx_models = glob.glob(path + '/*.onnx')
if len(onnx_models) > 1:
return onnx_models
elif len(onnx_models) == 1:
return onnx_models[0]
else:
return None
renamed_audio_file = None
#@app.post("/synthesize")
#@app.post("/", response_class=FileResponse)
@app.post("/", response_class=HTMLResponse)
async def main(
request: Request,
text_input: str = Form(...),
speaker: str = Form(...),
speed_slider: float = Form(1.0),
noise_scale_slider: float = Form(0.667),
noise_scale_w_slider: float = Form(1.0),
play: bool = Form(True)
):
"""Main entry point"""
sys.path.append('./content/piper/src/python')
models_path = "./content/piper/src/python"
logging.basicConfig(level=logging.DEBUG)
providers = [
"CPUExecutionProvider"
if use_gpu is False
else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"})
]
sess_options = onnxruntime.SessionOptions()
model = None
lang = speaker
onnx_models = detect_onnx_models(models_path)
if len(text_input) == 0:
text_input = "1, 2, 3. This is a test. Enter some text to generate."
# speaker_selection = widgets.Dropdown(
# options=[],
# description=f'{lan.translate(lang, "Select speaker")}:',
# layout={'visibility': 'hidden'}
# )
if onnx_models is None:
if enhanced_accessibility:
playaudio("novoices")
raise Exception(lan.translate(lang, "No downloaded voice packages!"))
elif isinstance(onnx_models, str):
onnx_model = onnx_models
model, config = load_onnx(onnx_model, sess_options, providers)
config["espeak"]["voice"] = speaker
config["inference"]["noise_scale"] = noise_scale_slider
config["inference"]["length_scale"] = speed_slider
config["inference"]["noise_w"] = noise_scale_w_slider
# lan.load_language(speaker)
print("nuber of speakers = ", config["num_speakers"])
print("speaker", speaker)
print("language", config["espeak"]["voice"])
# rate = speed_slider.value
# noise_scale = noise_scale_slider.value
# noise_scale_w = noise_scale_w_slider.value
auto_play = play
audio = inferencing(model, config, 0, text_input, speed_slider, noise_scale_slider, noise_scale_w_slider, auto_play)
temp_dir = tempfile.mkdtemp()
# Create a temporary directory to store the audio files
#temp_dir = tempfile.mkdtemp()
# Export the audio to an MP3 file in the temporary directory
# temp_audio_file = os.path.join(temp_dir, "generated_audio.mp3")
# Check if text_input is more than 200 characters
if len(text_input) > 200:
# Truncate text_input to 200 characters
text_input = text_input[:200]
# Rename the audio file based on the text input
renamed_audio_file = os.path.join(temp_dir, f"{text_input}.mp3")
audio.export(renamed_audio_file, format="mp3")
# Save the generated audio as a temporary file
filepath = renamed_audio_file
# Generate a unique file ID
file_id = str(uuid.uuid4())
# Store the file path with the generated file ID
files[file_id] = filepath
# Create a URL to download the file
file_url = f'/download?fileId={file_id}'
# os.rename(temp_audio_file, renamed_audio_file)
# Specify the path to your MP3 audio file
# audio_file_path = "path/to/your/audio.mp3"
# Check if the file exists
# if not os.path.exists(audio_file_path):
# return {"detail": "Audio file not found"}
# temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
# audio.export(temp_audio_file.name, format="mp3")
# Rename the temporary audio file based on the text input
# global renamed_audio_file
# renamed_audio_file = os.path.join(tempfile.gettempdir(), f"{text_input}.mp3")
# os.rename(temp_audio_file.name, renamed_audio_file)
else:
voice_model_names = []
for current in onnx_models:
voice_struct = current.split("/")[5]
voice_model_names.append(voice_struct)
# if enhanced_accessibility:
# playaudio("selectmodel")
# selection = widgets.Dropdown(
# options=voice_model_names,
# description=f'{lan.translate(lang, "Select voice package")}:',
# )
# load_btn = widgets.Button(
# description=lan.translate(lang, "Load it!")
# )
# config = None
# def load_model(button):
# nonlocal config
# global onnx_model
# nonlocal model
# nonlocal models_path
# selected_voice = selection.value
# onnx_model = f"{models_path}/{selected_voice}"
# model, config = load_onnx(onnx_model, sess_options, providers)
# if enhanced_accessibility:
# playaudio("loaded")
# if config["num_speakers"] > 1:
# speaker_selection.options = config["speaker_id_map"].values()
# speaker_selection.layout.visibility = 'visible'
# if enhanced_accessibility:
# playaudio("multispeaker")
# else:
# speaker_selection.layout.visibility = 'hidden'
# load_btn.on_click(load_model)
# display(selection, load_btn)
# display(speaker_selection)
# Save the audio as a temporary WAV file
return templates.TemplateResponse("interface.html", {"request": request, "file_url": file_url, "data": data})
# Serve the audio file with the correct media type
# return FileResponse(renamed_audio_file)
# return {"message": f"Text to synthesize: {text_input}, Speed: {speed_slider}, Play: {play}"}
@app.get("/download")
async def download_file(fileId: str):
# Retrieve the file path from the dictionary using the file ID
filepath = files.get(fileId)
if filepath:
# Create a FileResponse to serve the file for download
return FileResponse(filepath, headers={"Content-Disposition": "attachment"})
else:
return {"error": "File not found"}
def load_onnx(model, sess_options, providers = ["CPUExecutionProvider"]):
_LOGGER.debug("Loading model from %s", model)
config = load_config(model)
model = onnxruntime.InferenceSession(
str(model),
sess_options=sess_options,
providers= providers
)
_LOGGER.info("Loaded model from %s", model)
return model, config
def load_config(model):
with open(f"{model}.json", "r") as file:
config = json.load(file)
return config
PAD = "_" # padding (0)
BOS = "^" # beginning of sentence
EOS = "$" # end of sentence
class PhonemeType(str, Enum):
ESPEAK = "espeak"
TEXT = "text"
def phonemize(config, text: str) -> List[List[str]]:
"""Text to phonemes grouped by sentence."""
if config["phoneme_type"] == PhonemeType.ESPEAK:
if config["espeak"]["voice"] == "ar":
# Arabic diacritization
# https://github.com/mush42/libtashkeel/
text = tashkeel_run(text)
return phonemize_espeak(text, config["espeak"]["voice"])
if config["phoneme_type"] == PhonemeType.TEXT:
return phonemize_codepoints(text)
raise ValueError(f'Unexpected phoneme type: {config["phoneme_type"]}')
def phonemes_to_ids(config, phonemes: List[str]) -> List[int]:
"""Phonemes to ids."""
id_map = config["phoneme_id_map"]
ids: List[int] = list(id_map[BOS])
for phoneme in phonemes:
if phoneme not in id_map:
print("Missing phoneme from id map: %s", phoneme)
continue
ids.extend(id_map[phoneme])
ids.extend(id_map[PAD])
ids.extend(id_map[EOS])
return ids
def audio_float_to_int16(
audio: np.ndarray, max_wav_value: float = 32767.0
) -> np.ndarray:
"""Normalize audio and convert to int16 range"""
audio_norm = audio * (max_wav_value / max(0.01, np.max(np.abs(audio))))
audio_norm = np.clip(audio_norm, -max_wav_value, max_wav_value)
audio_norm = audio_norm.astype("int16")
return audio_norm
def inferencing(model, config, sid, line, length_scale, noise_scale, noise_scale_w, auto_play=True):
audios = []
if config["phoneme_type"] == "PhonemeType.ESPEAK":
config["phoneme_type"] = "espeak"
text = phonemize(config, line)
for phonemes in text:
phoneme_ids = phonemes_to_ids(config, phonemes)
num_speakers = config["num_speakers"]
if num_speakers == 1:
speaker_id = None # for now
else:
speaker_id = sid
text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0)
text_lengths = np.array([text.shape[1]], dtype=np.int64)
scales = np.array(
[noise_scale, length_scale, noise_scale_w],
dtype=np.float32,
)
sid = None
if speaker_id is not None:
sid = np.array([speaker_id], dtype=np.int64)
audio = model.run(
None,
{
"input": text,
"input_lengths": text_lengths,
"scales": scales,
"sid": sid,
},
)[0].squeeze((0, 1))
audio = audio_float_to_int16(audio.squeeze())
audios.append(audio)
merged_audio = np.concatenate(audios)
sample_rate = config["audio"]["sample_rate"]
temp_audio_path = os.path.join(tempfile.gettempdir(), "generated_audio.wav")
sf.write(temp_audio_path, merged_audio, config["audio"]["sample_rate"])
audio = AudioSegment.from_mp3(temp_audio_path)
return audio
# return FileResponse(temp_audio_path)
# Return the audio file as a FastAPI response
# display(Markdown(f"{line}"))
# display(Audio(merged_audio, rate=sample_rate, autoplay=auto_play))
def denoise(
audio: np.ndarray, bias_spec: np.ndarray, denoiser_strength: float
) -> np.ndarray:
audio_spec, audio_angles = transform(audio)
a = bias_spec.shape[-1]
b = audio_spec.shape[-1]
repeats = max(1, math.ceil(b / a))
bias_spec_repeat = np.repeat(bias_spec, repeats, axis=-1)[..., :b]
audio_spec_denoised = audio_spec - (bias_spec_repeat * denoiser_strength)
audio_spec_denoised = np.clip(audio_spec_denoised, a_min=0.0, a_max=None)
audio_denoised = inverse(audio_spec_denoised, audio_angles)
return audio_denoised
def stft(x, fft_size, hopsamp):
"""Compute and return the STFT of the supplied time domain signal x.
Args:
x (1-dim Numpy array): A time domain signal.
fft_size (int): FFT size. Should be a power of 2, otherwise DFT will be used.
hopsamp (int):
Returns:
The STFT. The rows are the time slices and columns are the frequency bins.
"""
window = np.hanning(fft_size)
fft_size = int(fft_size)
hopsamp = int(hopsamp)
return np.array(
[
np.fft.rfft(window * x[i : i + fft_size])
for i in range(0, len(x) - fft_size, hopsamp)
]
)
def istft(X, fft_size, hopsamp):
"""Invert a STFT into a time domain signal.
Args:
X (2-dim Numpy array): Input spectrogram. The rows are the time slices and columns are the frequency bins.
fft_size (int):
hopsamp (int): The hop size, in samples.
Returns:
The inverse STFT.
"""
fft_size = int(fft_size)
hopsamp = int(hopsamp)
window = np.hanning(fft_size)
time_slices = X.shape[0]
len_samples = int(time_slices * hopsamp + fft_size)
x = np.zeros(len_samples)
for n, i in enumerate(range(0, len(x) - fft_size, hopsamp)):
x[i : i + fft_size] += window * np.real(np.fft.irfft(X[n]))
return x
def inverse(magnitude, phase):
recombine_magnitude_phase = np.concatenate(
[magnitude * np.cos(phase), magnitude * np.sin(phase)], axis=1
)
x_org = recombine_magnitude_phase
n_b, n_f, n_t = x_org.shape # pylint: disable=unpacking-non-sequence
x = np.empty([n_b, n_f // 2, n_t], dtype=np.complex64)
x.real = x_org[:, : n_f // 2]
x.imag = x_org[:, n_f // 2 :]
inverse_transform = []
for y in x:
y_ = istft(y.T, fft_size=1024, hopsamp=256)
inverse_transform.append(y_[None, :])
inverse_transform = np.concatenate(inverse_transform, 0)
return inverse_transform
def transform(input_data):
x = input_data
real_part = []
imag_part = []
for y in x:
y_ = stft(y, fft_size=1024, hopsamp=256).T
real_part.append(y_.real[None, :, :]) # pylint: disable=unsubscriptable-object
imag_part.append(y_.imag[None, :, :]) # pylint: disable=unsubscriptable-object
real_part = np.concatenate(real_part, 0)
imag_part = np.concatenate(imag_part, 0)
magnitude = np.sqrt(real_part**2 + imag_part**2)
phase = np.arctan2(imag_part.data, real_part.data)
return magnitude, phase
#@app.get("/")
#async def read_root(request: Request):
# return templates.TemplateResponse("interface.html", {"request": request})
if __name__ == "__main__":
# main()
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
# main()
# pass
# app()
# Create an instance of the FastAPI class
#app = main()
# Define a route for the root endpoint
#def read_root():
# return {"message": "Hello, World!"}