File size: 2,263 Bytes
c2a02c6
 
eced5dc
c2a02c6
 
eced5dc
 
c2a02c6
 
 
 
 
 
 
 
 
 
eced5dc
c2a02c6
 
 
 
 
 
 
 
 
 
eced5dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import streamlit as st

original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 25px; font-weight:bold">ASCARIS:  Positional Feature Annotation and Protein Structure-Based Representation of Single Amino Acid Variations</p>'
st.markdown(original_title, unsafe_allow_html=True)

text = '<p style="font-family:Trebuchet MS; font-size: 20px; font-weight:bold">Developers: Fatma Cankara & Tunca Dogan</p>'
st.markdown(f'<p class="title-text">{text}</p>', unsafe_allow_html=True)

st.markdown(""" 
 <style>
  .main-text
  { 
  font-family:Trebuchet MS; font-size:14px;text-align: justify;font-weight:bold
  }
</style>""", unsafe_allow_html=True)


text = 'ASCARIS (Annotation and StruCture-bAsed RepresentatIon of Single amino acid variations) is a tool for the featurization (i.e., quantitative representation) of single amino acid variations (SAVs), which could be used for a variety of purposes, such as predicting their functional effects or building multi-omics-based integrative models. ASCARIS utilizes the correspondence between the location of the SAV on the sequence and 30 different types of positional feature annotations (e.g., active/lipidation/glycosylation sites; calcium/metal/DNA binding, inter/transmembrane regions, etc.) from UniProt, along with structural features and the change in physicochemical properties, using models from PDB and AlphaFold-DB. It constructs a 74-dimensional feature set (including meta-data) to represent a given SAV.'
st.markdown(f'<p class="title-text">{text}</p>', unsafe_allow_html=True)

text = 'Please refer to our pre-print article for more information on the construction of feature vectors, statistical analysis of features, and machine learning models trained on ASCARIS representations to predict the effect of SAVs:'
st.markdown(f'<p class="title-text">{text}</p>', unsafe_allow_html=True)

text = 'Cankara, F., & Dogan, T. (2022). ASCARIS: Positional Feature Annotation and Protein Structure-Based Representation of Single Amino Acid Variations. bioRxiv, 514934v1'
st.markdown(f'<p class="title-text">{text}</p>', unsafe_allow_html=True)

st.image('visuals/concept_figure.png')
text = 'ASCARIS Work Scheme'
st.markdown(f'<p style="text-align:center">{text}</p>', unsafe_allow_html=True)