Spaces:
Sleeping
Sleeping
File size: 1,556 Bytes
c2a02c6 |
1 |
'''
This code merges SwissModel model summary files (metadata) into one file to be used in feature vector creation.
Please run this code in the folder wherein downloaded .tar files are downloaded.
Merged file will be found under extract_swissmodel_structures folder that will be created when this code is run.
'''
import tarfile, glob, os, shutil
import argparse
parser = argparse.ArgumentParser(description='ASCARIS')
parser.add_argument('-folder_name', '--folder_name',
help='Enter the directory where meta-data is found.',
default=1)
args = parser.parse_args()
meta_data = args.folder_name
def swissmodel_file():
os.makedirs('input_files/extract_swissmodel_structures/', exist_ok=True)
all_swissmodel = open('input_files/swissmodel_structures.txt', 'w')
all_swissmodel.write('UniProtKB_ac iso_id uniprot_seq_length uniprot_seq_md5 coordinate_id provider from to template qmeandisco_global seqid url')
all_swissmodel.write('\n')
for f in glob.glob(f'{meta_data}/*.tar.gz'):
name = f.split('/')[-1].split('.')[0]
with tarfile.open(f) as tar:
tar.extractall(f'input_files/extract_swissmodel_structures/{name}')
with open(f'input_files/extract_swissmodel_structures/{name}/SWISS-MODEL_Repository/INDEX') as x:
lines = (x.readlines())[7:]
for line in lines:
all_swissmodel.write(line)
shutil.rmtree('input_files/extract_swissmodel_structures/')
if __name__ == '__main__':
swissmodel_file() |