Spaces:
Sleeping
Sleeping
File size: 3,187 Bytes
c2a02c6 8a2e1bf c2a02c6 c8b993f ec06c4b c8b993f 0d7f3a7 b68774d 9abc2e6 c2a02c6 8a2e1bf c2a02c6 8a2e1bf c2a02c6 ee0298f 80cfda5 e3df29c 80cfda5 43efedb dd50af6 80cfda5 b27ef4c 9e2f96b c8b993f 806931d c8b993f fa82089 e3df29c 8f90700 80cfda5 8f90700 efb78a7 8f90700 fa82089 9cffd28 da9bcac d6a723e da9bcac e52de1a d6a723e e52de1a e3df29c 05e0ac4 e52de1a e3df29c da9bcac 4ed9060 a0f4539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import streamlit as st
import pandas as pd
from os import path
import sys
import streamlit.components.v1 as components
sys.path.append('code/')
#sys.path.append('ASCARIS/code/')
import pdb_featureVector
import alphafold_featureVector
import argparse
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode,GridUpdateMode
import base64
showWarningOnDirectExecution = False
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
# Check if 'key' already exists in session_state
# If not, then initialize it
if 'visibility' not in st.session_state:
st.session_state['visibility'] = 'visible'
st.session_state.disabled = False
original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 25px; font-weight:bold; text-align:center">ASCARIS</p>'
st.markdown(original_title, unsafe_allow_html=True)
original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 25px; font-weight:bold; text-align:center">(Annotation and StruCture-bAsed RepresentatIon of Single amino acid variations)</p>'
st.markdown(original_title, unsafe_allow_html=True)
st.write('')
st.write('')
st.write('')
st.write('')
with st.form('mform', clear_on_submit=False):
st.write(' I am here currently.')
#source = st.selectbox('Select the protein structure resource (1: PDB-SwissModel-Modbase, 2: AlphaFold)',[1,2])
mode = 1
impute = st.selectbox('Imputation',[True, False])
input_set = st.text_input('Enter SAV data points (Example: Q9Y4W6-N-432-T)')
submitted = st.form_submit_button(label="Submit", help=None, on_click=None, args=None, kwargs=None, type="secondary", disabled=False, use_container_width=False)
print('*****************************************')
print('Feature vector generation is in progress. \nPlease check log file for updates..')
print('*****************************************')
mode = int(mode)
selected_df = pd.DataFrame()
st.write('The online tool may be slow, especially while processing multiple SAVs, please consider using the local programmatic version at https://github.com/HUBioDataLab/ASCARIS/')
if submitted:
st.write('submitted.')
with st.spinner('In progress...This may take a while...'):
try:
if mode == 1:
selected_df = pdb_featureVector.pdb(input_set, mode, impute)
elif mode == 2:
selected_df = alphafold_featureVector.alphafold(input_set, mode, impute)
else:
selected_df = pd.DataFrame()
except:
selected_df = pd.DataFrame()
pass
if selected_df is None:
st.success('Feature vector failed. Check log file.')
st.write('Failed here1')
else:
if len(selected_df) != 0 :
st.write(selected_df)
st.success('Feature vector successfully created.')
csv = convert_df(selected_df)
st.download_button("Press to Download the Feature Vector", csv,f"ASCARIS_SAV_rep_{input_set}.csv","text/csv",key='download-csv')
else:
st.success('Feature vector failed. Check log file.')
|