Spaces:
Sleeping
Sleeping
File size: 32,515 Bytes
c2a02c6 c451111 c2a02c6 c451111 c2a02c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
# IMPORT NECESSARY MODULES AND LIBRARIES
from timeit import default_timer as timer
import xml.etree.ElementTree as ET
from collections import Counter
from bs4 import BeautifulSoup
from io import StringIO
from decimal import *
import pandas as pd
import requests as r
import os.path as op
from pathlib import Path
import subprocess
import argparse
import ssbio.utils
import warnings
import sys
import pathlib
import os, glob
import math
import ssbio
import ssl
import gzip
import ast
import itertools
from Bio.Align import substitution_matrices
from Bio.PDB.Polypeptide import *
from Bio.PDB import PDBList
from Bio import Align
from Bio import SeqIO
from Bio.PDB import *
import numpy as np
# FUNCTIONS
from calc_pc_property import *
from add_domains import *
from add_annotations import *
from add_structure import *
from add_alignment import *
from manage_files import *
from add_3Dalignment import *
from add_sasa import *
from standard import *
from add_interface_pos import *
from standard import *
from uniprotSequenceMatch import uniprotSequenceMatch
from process_input import clean_data
from alphafold_model import *
def alphafold(input_set, mode, impute):
start = timer()
# Necessary lists
annotation_list = ['disulfide', 'intMet', 'intramembrane', 'naturalVariant', 'dnaBinding', 'activeSite',
'nucleotideBinding', 'lipidation', 'site', 'transmembrane', 'crosslink', 'mutagenesis', 'strand',
'helix', 'turn', 'metalBinding', 'repeat', 'topologicalDomain', 'caBinding', 'bindingSite',
'region',
'signalPeptide', 'modifiedResidue', 'zincFinger', 'motif', 'coiledCoil', 'peptide',
'transitPeptide', 'glycosylation', 'propeptide']
change_names = {'Disulfide bond': 'disulfide', 'Initiator methionine': 'intMet',
'Natural variant': 'naturalVariant',
'DNA binding': 'dnaBinding',
'Active site': 'activeSite', 'Nucleotide binding': 'nucleotideBinding', 'Lipidation': 'lipidation',
'Site': 'site', 'Transmembrane': 'transmembrane', 'Cross-link': 'crosslink',
'Mutagenesis': 'mutagenesis', 'Beta strand': 'strand', 'Helix': 'helix', 'Turn': 'turn',
'Metal binding': 'metalBinding', 'Repeat': 'repeat',
'Topological domain': 'topologicalDomain', 'Calcium binding': 'caBinding',
'Binding site': 'bindingSite',
'Region': 'region', 'Signal peptide': 'signalPeptide', 'Modified residue': 'modifiedResidue',
'Zinc finger': 'zincFinger', 'Motif': 'motif', 'Coiled coil': 'coiledCoil', 'Peptide': 'peptide',
'Transit peptide': 'transitPeptide', 'Glycosylation': 'glycosylation', 'Propeptide': 'propeptide',
'Intramembrane': 'intramembrane'}
## Standardizing input
data = clean_data(input_set)
path_to_input_files, path_to_output_files, path_to_domains, fisher_path, path_to_interfaces, alphafold_path, alphafold_summary= manage_files(mode)
out_path = path_to_output_files / 'log.txt'
sys.stdout = open(out_path, 'w')
print('Creating directories...')
file_base = str(Path(alphafold_path / '*'))
file_str = glob.glob(file_base)[0].split('-')[-1].split('.')[0]
## Physicochemical properties
print('Adding physicochemical properties...\n')
data = add_physicochemical(data)
## Domains
print('Adding domains\n')
data = add_domains(data, path_to_domains)
## Processing data frame
data = data.astype(str)
data = data.replace({'NaN': np.NaN, 'nan': np.NaN})
data.domain = data.domain.replace({np.NaN: '-1'}) # Fill -1 if NaN - standardization.
data.domStart = data.domStart.replace({np.NaN: '-1'})
data.domEnd = data.domEnd.replace({np.NaN: '-1'})
data.distance = data.distance.replace({np.NaN: '-1'})
fisherResult = pd.read_csv(fisher_path, sep='\t')
significant_domains = fisherResult.domain.to_list()
data = data.reset_index()
data = data.drop(columns=['index'])
## not_match_in_uniprot : Data points not matched to UniProt sequence
## uniprot_matched: Data points matched to UniProt sequence. Proceed with this data frame
## canonical_fasta : Dataframe including canonical sequence for the protein of interest. Obtained from UniProt.
## isoform_fasta: Dataframe including isoform sequences for the protein of interest. Obtained from UniProt.
not_match_in_uniprot, uniprot_matched, canonical_fasta, isoform_fasta = uniprotSequenceMatch(data)
not_match_in_uniprot = not_match_in_uniprot.reset_index().drop(['index'], axis=1)
for key in change_names.keys():
not_match_in_uniprot[key] = ''
not_match_in_uniprot = not_match_in_uniprot.rename(columns=change_names)
uniprot_matched = add_annotations(uniprot_matched)
for w in uniprot_matched.index:
for q in annotation_list:
per_protein = []
if uniprot_matched.at[w, q] != 'nan':
fix = ast.literal_eval(uniprot_matched.at[w, q])
for z in fix:
if '-' in z:
per_protein += np.arange(int(z.split('-')[0]), int(z.split('-')[1])+1,1).tolist()
else:
try:
per_protein.append(int(z))
except:
ValueError
uniprot_matched.at[w, q] = per_protein
else:
uniprot_matched.at[w, q] = 'nan'
uniprot_matched = uniprot_matched.rename(columns=change_names)
uniprot_matched['wt_sequence_match'] = uniprot_matched['wt_sequence_match'].astype(str)
## Avoiding downloading files for SASA calculation if already downloaded.
existing_free_sasa = list(Path(path_to_output_files / 'freesasa_files').glob("*"))
existing_free_sasa = [str(i) for i in existing_free_sasa]
existing_free_sasa = [i.split('/')[-1].split('.')[0] for i in existing_free_sasa]
## Decide if the wild type amino acid is on canonical or isoform sequence. Selected sequence will be used for the
## sequence alignment.
for i in uniprot_matched.index:
if len(uniprot_matched.at[i, 'uniprotSequence']) >= int(uniprot_matched.at[i, 'pos']):
wt = uniprot_matched.at[i, 'wt']
can = str(uniprot_matched.at[i, 'uniprotSequence'])[int(uniprot_matched.at[i, 'pos']) - 1]
if wt == can:
uniprot_matched.at[i, 'wt_sequence_match'] = 'm'
elif wt != can:
isoList = isoform_fasta[
isoform_fasta['uniprotID'] == uniprot_matched.at[i, 'uniprotID']].isoformSequence.to_list()
for k in isoList:
if len(k) >= int(uniprot_matched.at[i, 'pos']):
resInIso = k[int(int(uniprot_matched.at[i, 'pos']) - 1)]
if wt == resInIso:
whichIsoform = isoform_fasta[isoform_fasta.isoformSequence == k].whichIsoform.to_list()[0]
uniprot_matched.at[i, 'wt_sequence_match'] = 'i'
uniprot_matched.at[i, 'whichIsoform'] = whichIsoform
break
elif len(uniprot_matched.at[i, 'uniprotSequence']) < int(uniprot_matched.at[i, 'pos']):
isoList = isoform_fasta[
isoform_fasta['uniprotID'] == uniprot_matched.at[i, 'uniprotID']].isoformSequence.to_list()
for k in isoList:
if len(k) >= int(uniprot_matched.at[i, 'pos']):
resInIso = k[int(int(uniprot_matched.at[i, 'pos']) - 1)]
wt = uniprot_matched.at[i, 'wt']
if wt == resInIso:
whichIsoform = isoform_fasta[isoform_fasta.isoformSequence == k].whichIsoform.to_list()[0]
uniprot_matched.at[i, 'wt_sequence_match'] = 'i'
uniprot_matched.at[i, 'whichIsoform'] = whichIsoform
break
uniprot_matched = uniprot_matched.replace({'nan': np.NaN})
for annot in ['Domain', 'Alternative sequence', 'Chain', 'Sequence conflict', 'Compositional bias']:
try:
uniprot_matched = uniprot_matched.drop(columns=annot)
except:
KeyError
print('You have %d data points that failed to match a UniProt Sequence\nProceeding with %d remaining...\n'
% (len(not_match_in_uniprot.drop_duplicates(['datapoint'])),
len(uniprot_matched.drop_duplicates(['datapoint']))))
## Adding interface residue information.
data_interface = pd.read_csv(path_to_interfaces, sep='\t')
interface_positions = get_interface_positions(data_interface, 'P1', 'P2')
interface_dataframe = pd.DataFrame()
for key, val in interface_positions.items():
k = pd.Series((key, str(list(set(val)))))
interface_dataframe = interface_dataframe.append(k, ignore_index=True)
interface_dataframe.columns = ['uniprotID', 'interface_positions']
uniprot_matched = uniprot_matched.merge(interface_dataframe, on='uniprotID', how='left')
uniprot_matched.interface_positions = uniprot_matched.interface_positions.astype('str')
## PDB info file is pre-generated for time concerns. Includes summary data of AlphaFold structures.
## With new updates, can be updated separately.
pdb_info = pd.read_csv(alphafold_summary, sep='\t')
## Keeping how many models each AlphaFold structure has.
model_count = modelCount(alphafold_path)
for k, v in model_count.items():
model_count[k] = int(v / 2) # two types of files for each file.
uniprot_matched = uniprot_matched.astype(str)
uniprot_matched.domStart = uniprot_matched.domStart.astype(float)
uniprot_matched.domEnd = uniprot_matched.domEnd.astype(float)
uniprot_matched.domStart = uniprot_matched.domStart.astype(int)
uniprot_matched.domEnd = uniprot_matched.domEnd.astype(int)
## Main part to add annotation information, align sequences, finding distances
for i in uniprot_matched.index:
print('Processing', i, 'of', len(uniprot_matched))
if len(uniprot_matched.at[i, 'uniprotSequence']) >= int(uniprot_matched.at[i, 'pos']):
wt = uniprot_matched.at[i, 'wt']
can = str(uniprot_matched.at[i, 'uniprotSequence'])[int(uniprot_matched.at[i, 'pos']) - 1]
## Information about whether the mutation is found on the canonical or isoform sequence.
if wt == can:
uniprot_matched.at[i, 'wt_sequence_match'] = 'm'
elif wt != can:
isoList = isoform_fasta[
isoform_fasta['uniprotID'] == uniprot_matched.at[i, 'uniprotID']].isoformSequence.to_list()
for k in isoList:
if len(k) >= int(uniprot_matched.at[i, 'pos']):
resInIso = k[int(int(uniprot_matched.at[i, 'pos']) - 1)]
if wt == resInIso:
whichIsoform = isoform_fasta[isoform_fasta.isoformSequence == k].whichIsoform.to_list()[0]
uniprot_matched.at[i, 'wt_sequence_match'] = 'i'
uniprot_matched.at[i, 'whichIsoform'] = whichIsoform
break
elif len(uniprot_matched.at[i, 'uniprotSequence']) < int(uniprot_matched.at[i, 'pos']):
isoList = isoform_fasta[
isoform_fasta['uniprotID'] == uniprot_matched.at[i, 'uniprotID']].isoformSequence.to_list()
for k in isoList:
if len(k) >= int(uniprot_matched.at[i, 'pos']):
resInIso = k[int(int(uniprot_matched.at[i, 'pos']) - 1)]
wt = uniprot_matched.at[i, 'wt']
if wt == resInIso:
whichIsoform = isoform_fasta[isoform_fasta.isoformSequence == k].whichIsoform.to_list()[0]
uniprot_matched.at[i, 'wt_sequence_match'] = 'i'
uniprot_matched.at[i, 'whichIsoform'] = whichIsoform
break
uniprotID = uniprot_matched.at[i, 'uniprotID']
datapoint = uniprot_matched.at[i, 'datapoint']
for k in annotation_list:
txt = k + 'Binary'
if (str(uniprot_matched.at[i, txt]) == '0') or (str(uniprot_matched.at[i, txt]) == '0.0'):
uniprot_matched.at[i, txt] = '1'
elif (str(uniprot_matched.at[i, txt]).lower() == 'nan') | (str(uniprot_matched.at[i, txt]) == np.NaN) :
uniprot_matched.at[i, txt] = '0'
elif (str(uniprot_matched.at[i, txt]) == '1') or (str(uniprot_matched.at[i, txt]) == '1.0'):
uniprot_matched.at[i, txt] = '2'
## Search in all models.
models_for_protein = [val for key, val in model_count.items() if
uniprotID in key.split(';')] # We have this many models for the protein.
which_model_mutation = which_model(
int(uniprot_matched.at[i, 'pos'])) # List of models in which the mutation can be found.
models_for_all_annotations = {}
for annot in annotation_list:
if len(uniprot_matched.at[i, annot]) != 0 and type(uniprot_matched.at[i, annot]) != list:
uniprot_matched.at[i, annot] = list(
map(str.strip, uniprot_matched.at[i, annot].strip('][').replace('"', '').split(',')))
models_for_annotations = {} # Recording which position is found in which model file.
for annot_position in uniprot_matched.at[i, annot]:
if annot_position != 'nan' and annot_position != '':
models_for_that_position = which_model(int(annot_position))
else:
models_for_that_position = {}
for key, val in models_for_that_position.items():
if key not in models_for_annotations.keys():
models_for_annotations[key] = [val]
else:
models_for_annotations[key] += [val]
models_for_all_annotations[annot] = models_for_annotations
new_dict = {}
for key, val in models_for_all_annotations.items():
subdict = {k: v for k, v in val.items() if k in which_model_mutation}
subdict = dict(sorted(subdict.items()))
new_dict[key] = subdict
new_dict = reduce_model_dict(new_dict)
models_we_need = list(set(itertools.chain.from_iterable(
[list(ov.keys()) for ok, ov in new_dict.items()]))) # Read models with these numbers
info_per_model = {} # her bir datapoint için baştan yazılıyor.
dist_of_annots = {}
all_domain_distances = []
for mod in models_we_need:
print('---------PRINTING FOR MODEL--------', mod)
dist_of_annots[str(mod)] = {}
info_per_model[mod] = {}
info_per_model[mod]['datapoint'] = datapoint
identifier = uniprot_matched.at[i, 'uniprotSequence']
try:
pdbSequence = pdb_info.loc[(pdb_info.uniprotID == uniprotID) & (
pdb_info.model_num == mod)].sequence.item()
except:
ValueError
pdbSequence = 'nan'
if pdbSequence != 'nan': # The number in models we need might not be present for that protein. Preventng error.
pdbSequence = pdb_info.loc[(pdb_info.uniprotID == uniprotID) & (pdb_info.model_num == mod)].sequence.item()
alignment_list = do_alignment(uniprot_matched.at[i, 'datapoint'], uniprot_matched.at[i, 'uniprotSequence'],
pdbSequence, Path(path_to_output_files / 'alignment_files'))
pdb_alignStatus = mutation_position_on_pdb(alignment_list, uniprot_matched.at[i, 'pos'])[0]
info_per_model[mod]['pdb_alignStatus'] = pdb_alignStatus
mutationPositionOnPDB = mutation_position_on_pdb(alignment_list, uniprot_matched.at[i, 'pos'])[1]
info_per_model[mod]['mutationPositionOnPDB'] = mutationPositionOnPDB
startGap = mutation_position_on_pdb(alignment_list, uniprot_matched.at[i, 'pos'])[2]
info_per_model[mod]['startGap'] = startGap
alignment_to_use = mutation_position_on_pdb(alignment_list, uniprot_matched.at[i, 'pos'])[3]
for annot in annotation_list:
if new_dict[annot] == {}:
annotation_pos_on_pdb_ = []
else:
try:
annotation_pos_on_pdb_ = annotation_pos_on_pdb(new_dict[annot][mod], startGap, alignment_to_use,
identifier)
except:
KeyError
info_per_model[mod][annot] = annotation_pos_on_pdb_
pdb_path = Path(f'{alphafold_path}/AF-{uniprotID}-F{mod}-{file_str}.pdb.gz')
if get_alignments_3D(uniprotID, mod, pdb_path, pdbSequence, 'nan', 'nan', 'nan', mode, Path(path_to_output_files / '3D_alignment'),
'gzip') != None:
alignments, coords, resnums_for_sasa = get_alignments_3D(uniprotID, mod, pdb_path, pdbSequence, 'nan',
'nan', 'nan', mode, Path(path_to_output_files / '3D_alignment'),
'gzip')
alignments = alignments[0]
calculate_freesasa(uniprotID, mod, existing_free_sasa, alphafold_path, path_to_output_files)
if (mutationPositionOnPDB != 'nan'):
if (int(mutationPositionOnPDB) <= 1400):
try:
coordMut = get_coords(mutationPositionOnPDB, alignments, coords, resnums_for_sasa, mode)[0]
except:
ValueError
coordMut = 'nan'
else:
coordMut = np.NaN
sasa_pos = get_coords(mutationPositionOnPDB, alignments, coords, resnums_for_sasa, mode)[2]
sasa_val = sasa('alphafold', 'nan', uniprotID, sasa_pos, uniprot_matched.at[i, 'wt'], mode,
path_to_output_files, file_type='gzip')
if sasa_val != None:
uniprot_matched.at[i, 'sasa'] = sasa_val
else:
coordMut = 'nan'
sasa_val = 'nan'
uniprot_matched.at[i, 'sasa'] = sasa_val
domainPositionOnPDB_list = list(
range(int(uniprot_matched.at[i, 'domStart']), int(uniprot_matched.at[i, 'domEnd'])))
domain_distances = []
if len(domainPositionOnPDB_list) != 0:
for domain_ in domainPositionOnPDB_list:
coordDomain = get_coords(domain_, alignments, coords, resnums_for_sasa, mode)[0]
distance_dom = float(find_distance(coordMut,
coordDomain)) # bu bir anotasyonun bir modeldeki bir tane pozisyonu için.
domain_distances.append(distance_dom)
minimum_domain = min(domain_distances) # minimum for one model.
else:
minimum_domain = np.NaN
all_domain_distances.append(minimum_domain)
list_dist_of_annots = []
for key, val in info_per_model.items():
modNum = key
min_annots = {} # Write from scratch for each annotation.
if modNum == mod:
for label, annotPos in val.items(): # For each annotation type, calculate all distances of the annot positions.
if label in annotation_list:
all_annot_distance_per_model = [] # All distances of an annoation in hat model
for annot_position in annotPos:
if (annot_position != 'nan'):
if (int(annot_position) <= 1400):
coordAnnot = \
get_coords(annot_position, alignments, coords, resnums_for_sasa, mode)[
0]
distance = float(find_distance(coordMut,
coordAnnot)) # bu bir anotasyonun bir modeldeki bir tane pozisyonu için.
all_annot_distance_per_model.append(distance)
if all_annot_distance_per_model != []:
all_annot_distance_per_model = [float(i) for i in all_annot_distance_per_model]
try:
minimum_position = float(min(all_annot_distance_per_model))
except:
ValueError
minimum_position = 'nan'
min_annots[label] = float(
minimum_position) # Minimum of the annotation in this model.
if min_annots != {}:
list_dist_of_annots.append(min_annots)
dist_of_annots[str(
mod)] = list_dist_of_annots # Getting minimum of all possible models
# uniprot_matched.at[i, annotation_type] = minimum_position
else:
print('Model File Not Found')
uniprot_matched.at[i, 'sasa'] = np.NaN
if len(all_domain_distances) != 0:
uniprot_matched.at[i, 'domaindistance3D'] = min(all_domain_distances)
else:
uniprot_matched.at[i, 'domaindistance3D'] = np.NaN
dist_of_annots_min_of_all = {}
flat = [item for sublist in list(dist_of_annots.values()) for item in sublist]
for f in flat:
for key, val in f.items():
if key not in dist_of_annots_min_of_all.keys():
dist_of_annots_min_of_all[key] = val
elif (key in dist_of_annots_min_of_all.keys()) & (float(dist_of_annots_min_of_all[key]) > float(val)):
dist_of_annots_min_of_all[key] = val
key_list = []
for key, val in dist_of_annots_min_of_all.items():
uniprot_matched.at[i, key] = val
key_list.append(key)
remaining = list(set(annotation_list) - set(key_list))
for rem in remaining:
uniprot_matched.at[i, rem] = ''
uniprot_matched.at[i, 'distances'] = [dist_of_annots]
if (uniprot_matched.at[i, 'sasa'] != None) & (uniprot_matched.at[i, 'sasa'] != np.NaN) & (
str(uniprot_matched.at[i, 'sasa']) != 'nan'):
if '*' in uniprot_matched.at[i, 'sasa']:
uniprot_matched.at[i, 'sasa'] = uniprot_matched.at[i, 'sasa'].split('*')[0]
try:
uniprot_matched.at[i, 'sasa'] = float(uniprot_matched.at[i, 'sasa'].strip())
except:
TypeError
if float(uniprot_matched.at[i, 'sasa']) < 5:
uniprot_matched.at[i, 'trsh4'] = 'core'
elif float(uniprot_matched.at[i, 'sasa']) >= 5:
uniprot_matched.at[i, 'trsh4'] = 'surface'
elif str(uniprot_matched.at[i, 'sasa']) == 'nan':
uniprot_matched.at[i, 'trsh4'] = 'nan'
else:
uniprot_matched.at[i, 'trsh4'] = 'nan'
if (str(uniprot_matched.at[i, 'pos']) in uniprot_matched.at[i, 'interface_positions']) and uniprot_matched.at[
i, 'trsh4'] == 'surface':
uniprot_matched.at[i, 'threeState_trsh4_HQ'] = 'interface'
elif (str(uniprot_matched.at[i, 'pos']) not in uniprot_matched.at[i, 'interface_positions']) and uniprot_matched.at[
i, 'trsh4'] == 'surface':
uniprot_matched.at[i, 'threeState_trsh4_HQ'] = 'surface'
elif (str(uniprot_matched.at[i, 'pos']) not in uniprot_matched.at[i, 'interface_positions']) and uniprot_matched.at[
i, 'trsh4'] == 'core':
uniprot_matched.at[i, 'threeState_trsh4_HQ'] = 'core'
elif (str(uniprot_matched.at[i, 'pos']) in uniprot_matched.at[i, 'interface_positions']) and uniprot_matched.at[
i, 'trsh4'] == 'core':
uniprot_matched.at[i, 'threeState_trsh4_HQ'] = 'conflict'
elif uniprot_matched.at[i, 'trsh4'] == 'nan':
uniprot_matched.at[i, 'threeState_trsh4_HQ'] = 'nan'
if uniprot_matched.at[i, 'domain'] in significant_domains:
uniprot_matched.at[i, 'domain_fisher'] = uniprot_matched.at[i, 'domain']
else:
uniprot_matched.at[i, 'domain_fisher'] = 'NULL'
uniprot_matched = uniprot_matched.round(2)
uniprot_matched = uniprot_matched.astype(str)
uniprot_matched[ 'domain'] = uniprot_matched['domain'].replace({'-1': 'NULL'})
uniprot_matched = uniprot_matched.drop_duplicates()
uniprot_matched.rename(
columns={'uniprotID': 'prot_uniprotAcc', 'wt': 'wt_residue', 'pos': 'position', 'mut': 'mut_residue',
'datapoint': 'meta_merged', 'datapoint_disease': 'meta-lab_merged', 'label': 'source_db',
'family': 'prot_family', 'domain': 'domains_all', 'domain_fisher': 'domains_sig',
'domaindistance3D': 'domains_3Ddist', 'threeState_trsh4_HQ': 'location_3state',
'disulfideBinary': 'disulfide_bin', 'intMetBinary': 'intMet_bin',
'intramembraneBinary': 'intramembrane_bin',
'naturalVariantBinary': 'naturalVariant_bin', 'dnaBindingBinary': 'dnaBinding_bin',
'activeSiteBinary': 'activeSite_bin',
'nucleotideBindingBinary': 'nucleotideBinding_bin', 'lipidationBinary': 'lipidation_bin',
'siteBinary': 'site_bin',
'transmembraneBinary': 'transmembrane_bin', 'crosslinkBinary': 'crosslink_bin',
'mutagenesisBinary': 'mutagenesis_bin',
'strandBinary': 'strand_bin', 'helixBinary': 'helix_bin', 'turnBinary': 'turn_bin',
'metalBindingBinary': 'metalBinding_bin',
'repeatBinary': 'repeat_bin', 'topologicalDomainBinary': 'topologicalDomain_bin',
'caBindingBinary': 'caBinding_bin',
'bindingSiteBinary': 'bindingSite_bin', 'regionBinary': 'region_bin',
'signalPeptideBinary': 'signalPeptide_bin',
'modifiedResidueBinary': 'modifiedResidue_bin', 'zincFingerBinary': 'zincFinger_bin',
'motifBinary': 'motif_bin',
'coiledCoilBinary': 'coiledCoil_bin', 'peptideBinary': 'peptide_bin',
'transitPeptideBinary': 'transitPeptide_bin',
'glycosylationBinary': 'glycosylation_bin', 'propeptideBinary': 'propeptide_bin',
'disulfide': 'disulfide_dist', 'intMet': 'intMet_dist',
'intramembrane': 'intramembrane_dist', 'naturalVariant': 'naturalVariant_dist',
'dnaBinding': 'dnaBinding_dist', 'activeSite': 'activeSite_dist',
'nucleotideBinding': 'nucleotideBinding_dist', 'lipidation': 'lipidation_dist', 'site': 'site_dist',
'transmembrane': 'transmembrane_dist', 'crosslink': 'crosslink_dist',
'mutagenesis': 'mutagenesis_dist', 'strand': 'strand_dist', 'helix': 'helix_dist', 'turn': 'turn_dist',
'metalBinding': 'metalBinding_dist', 'repeat': 'repeat_dist',
'topologicalDomain': 'topologicalDomain_dist', 'caBinding': 'caBinding_dist',
'bindingSite': 'bindingSite_dist', 'region': 'region_dist',
'signalPeptide': 'signalPeptide_dist', 'modifiedResidue': 'modifiedResidue_dist',
'zincFinger': 'zincFinger_dist', 'motif': 'motif_dist', 'coiledCoil': 'coiledCoil_dist',
'peptide': 'peptide_dist', 'transitPeptide': 'transitPeptide_dist',
'glycosylation': 'glycosylation_dist', 'propeptide': 'propeptide_dist'}, inplace=True)
uniprot_matched = uniprot_matched[
['prot_uniprotAcc', 'wt_residue', 'mut_residue', 'position', 'meta_merged', 'composition', 'polarity', 'volume',
'granthamScore', 'domains_all',
'domains_sig', 'domains_3Ddist', 'sasa', 'location_3state', 'disulfide_bin', 'intMet_bin',
'intramembrane_bin', 'naturalVariant_bin', 'dnaBinding_bin',
'activeSite_bin', 'nucleotideBinding_bin', 'lipidation_bin', 'site_bin',
'transmembrane_bin', 'crosslink_bin', 'mutagenesis_bin', 'strand_bin',
'helix_bin', 'turn_bin', 'metalBinding_bin', 'repeat_bin',
'caBinding_bin', 'topologicalDomain_bin', 'bindingSite_bin',
'region_bin', 'signalPeptide_bin', 'modifiedResidue_bin',
'zincFinger_bin', 'motif_bin', 'coiledCoil_bin', 'peptide_bin',
'transitPeptide_bin', 'glycosylation_bin', 'propeptide_bin', 'disulfide_dist', 'intMet_dist',
'intramembrane_dist',
'naturalVariant_dist', 'dnaBinding_dist', 'activeSite_dist',
'nucleotideBinding_dist', 'lipidation_dist', 'site_dist',
'transmembrane_dist', 'crosslink_dist', 'mutagenesis_dist',
'strand_dist', 'helix_dist', 'turn_dist', 'metalBinding_dist',
'repeat_dist', 'caBinding_dist', 'topologicalDomain_dist',
'bindingSite_dist', 'region_dist', 'signalPeptide_dist',
'modifiedResidue_dist', 'zincFinger_dist', 'motif_dist',
'coiledCoil_dist', 'peptide_dist', 'transitPeptide_dist',
'glycosylation_dist', 'propeptide_dist']]
uniprot_matched = uniprot_matched.reset_index()
uniprot_matched = uniprot_matched.drop(columns = {'index'})
# Imputation
if (impute == 'True') or (impute == 'true'):
filler = [20.71, 46.67, 28.13,15.5, 35.94, 21.84, 25.15, 45.15, 29.81, 29.91, 34.67, 24.72, 10.66,11.55, 13.02,
21.54,27.42, 38.39, 30.44, 20.9, 25.82, 46.12, 32.1, 35.96, 35.86, 37.88, 19.09, 35.2, 26.95, 37.48]
col_index = 0
for col_ in uniprot_matched.columns[-30:]:
uniprot_matched[col_] = uniprot_matched[col_].fillna(filler[col_index])
uniprot_matched[col_] = uniprot_matched[col_].replace({'nan': filler[col_index]})
uniprot_matched[col_] = uniprot_matched[col_].replace({'': filler[col_index]})
"""
if uniprot_matched[col_].values == '':
uniprot_matched[col_] = filler[col_index]
"""
col_index += 1
uniprot_matched['domains_3Ddist'] = uniprot_matched['domains_3Ddist'].fillna(29.78)
uniprot_matched['sasa'] = uniprot_matched['sasa'].fillna(35.6)
uniprot_matched['location_3state'] = uniprot_matched['location_3state'].fillna('unknown')
elif (impute == 'False') or (impute == 'false'):
pass
uniprot_matched = uniprot_matched.replace({'nan': np.NaN})
uniprot_matched = uniprot_matched.replace({'['']': np.NaN})
uniprot_matched.to_csv(path_to_output_files / 'featurevector_alphafold.txt', index=False, sep='\t')
if len(uniprot_matched) == 0:
print(
'No feature vector could be produced for input data. Please check the presence of a structure for the input proteins.')
print('Feature vector successfully created...')
end = timer()
hours, rem = divmod(end - start, 3600)
minutes, seconds = divmod(rem, 60)
print("Time passed: {:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds))
sys.stdout.close()
return uniprot_matched
|