Spaces:
Sleeping
Sleeping
File size: 1,426 Bytes
c2a02c6 c1132e6 c2a02c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import pdb_featureVector
import alphafold_featureVector
import argparse
parser = argparse.ArgumentParser(description='ASCARIS')
parser.add_argument('-s', '--source_option',
help='Selection of input structure data.\n 1: PDB Structures (default), 2: AlphaFold Structures',
default=1)
parser.add_argument('-i', '--input_datapoint',
help='Input file or query datapoint\n Option 1: Comma-separated list of idenfiers (UniProt ID-wt residue-position-mutated residue (e.g. Q9Y4W6-N-432-T or Q9Y4W6-N-432-T, Q9Y4W6-N-432-T)) \n Option 2: Enter comma-separated file path')
parser.add_argument('-impute', '--imputation_state', default='True',
help='Whether resulting feature vector should be imputed or not. Default True.')
args = parser.parse_args()
input_set = args.input_datapoint
mode = args.source_option
impute = args.imputation_state
def run_featureVector(input_set, mode, impute):
print('*****************************************')
print('Feature vector generation is in progress. \nPlease check log file for updates..')
print('*****************************************')
mode = int(mode)
if mode == 1:
pdb_featureVector.pdb(input_set, mode, impute)
elif mode == 2:
alphafold_featureVector.alphafold(input_set, mode, impute)
if __name__ == '__main__':
run_featureVector(input_set, mode, impute)
|