File size: 3,829 Bytes
c2a02c6
 
 
 
 
 
 
 
 
 
 
8a2e1bf
c2a02c6
c8b993f
ec06c4b
 
c8b993f
 
0d7f3a7
 
 
b68774d
9abc2e6
c2a02c6
8a2e1bf
 
 
c2a02c6
8a2e1bf
c2a02c6
 
 
 
 
e5bafbe
dd50af6
43efedb
 
dd50af6
e515e54
b7a9a10
43efedb
 
b7a9a10
c2a02c6
b27ef4c
 
 
 
 
 
b68774d
b27ef4c
 
 
 
 
 
 
 
 
9e2f96b
c8b993f
 
 
 
806931d
c8b993f
 
8f90700
7da329c
8f90700
 
 
 
 
 
 
 
 
efb78a7
8f90700
 
 
4ed9060
c4235e2
4ed9060
 
 
 
 
 
 
a94e895
d14545c
4ed9060
 
a0f4539
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import streamlit as st
import pandas as pd 
from os import path
import sys
import streamlit.components.v1 as components
sys.path.append('code/')
#sys.path.append('ASCARIS/code/') 
import pdb_featureVector
import alphafold_featureVector
import argparse
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode,GridUpdateMode
import base64
showWarningOnDirectExecution = False

def convert_df(df):
   return df.to_csv(index=False).encode('utf-8')

    
# Check if 'key' already exists in session_state
# If not, then initialize it
if 'visibility' not in st.session_state:
    st.session_state['visibility'] = 'visible'
    st.session_state.disabled =  False

original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 25px; font-weight:bold; text-align:center">ASCARIS</p>'
st.markdown(original_title, unsafe_allow_html=True)
original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 25px; font-weight:bold; text-align:center">(Annotation and StruCture-bAsed RepresentatIon of Single amino acid variations)</p>'
st.markdown(original_title, unsafe_allow_html=True)
 
st.write('')
st.write('')
st.write('')
st.write('')

selected_df = pd.DataFrame()
with st.form('mform', clear_on_submit=True):
    source = st.selectbox('Select the protein structure resource (1: PDB-SwissModel-Modbase, 2: AlphaFold)',[1,2])
    impute = st.selectbox('Imputation',[True, False])
    
    input_data = st.text_input('Enter SAV data points (Format Provided Below)', "Q9Y4W6-N-432-T",
            label_visibility=st.session_state.visibility,
            disabled=st.session_state.disabled,
            )


    parser = argparse.ArgumentParser(description='ASCARIS')
    
    parser.add_argument('-s', '--source_option',
                        help='Selection of input structure data.\n 1: PDB Structures (default), 2: AlphaFold Structures',
                        default=1)
    parser.add_argument('-i', '--input_datapoint',
                        help='Input file or query datapoint\n Option 1: Comma-separated list of identifiers (UniProt ID-wt residue-position-mutated residue (e.g. Q9Y4W6-N-432-T or Q9Y4W6-N-432-T, Q9Y4W6-N-432-T)) \n Option 2: Enter comma-separated file path')
    
    parser.add_argument('-impute', '--imputation_state', default='True',
                        help='Whether resulting feature vector should be imputed or not. Default True.')
    
    args = parser.parse_args()
    
    input_set = input_data
    mode = source
    impute = impute
    submitted = st.form_submit_button(label="Submit", help=None, on_click=None, args=None, kwargs=None, type="secondary", disabled=False, use_container_width=False)
    print('*****************************************')
    print('Feature vector generation is in progress. \nPlease check log file for updates..')
    print('*****************************************')
    mode = int(mode)
    
    
    
if submitted:
    
    with st.spinner('In progress...This may take a while...'):
        try:
            if mode == 1:
                selected_df = pdb_featureVector.pdb(input_set, mode, impute)    
                
            elif mode == 2:
                selected_df = alphafold_featureVector.alphafold(input_set, mode, impute)
            else:
                selected_df =  pd.DataFrame()

        except:
            selected_df = pd.DataFrame()
            pass
    if selected_df != None:
        if len(selected_df) != 0 :
            st.success('Feature vector successfully created.')
            csv = convert_df(selected_df)
    
            st.download_button("Press to Download the Feature Vector", csv,"ASCARIS_SAV_rep.csv","text/csv",key='download-csv')
    
        else:
            st.success('Feature vector failed.')
    else:
        st.success('Feature vector failed. Check log file.')