File size: 7,739 Bytes
1cc2077
 
 
 
 
 
 
25f445b
b90013e
1cc2077
 
a2e6203
1cc2077
 
 
 
 
 
 
 
 
b90013e
 
 
 
 
363f92a
 
b90013e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53feeb3
1cc2077
 
 
 
 
d10decd
 
 
 
 
1cc2077
 
d10decd
1cc2077
 
 
 
 
b90013e
 
1cc2077
 
 
b90013e
 
 
 
 
 
363f92a
 
 
 
 
 
 
b90013e
363f92a
 
 
b90013e
363f92a
b90013e
 
1cc2077
 
 
 
b90013e
 
1cc2077
 
 
b90013e
1cc2077
 
 
 
 
 
 
b90013e
1cc2077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b90013e
1cc2077
 
 
b90013e
1cc2077
 
 
 
 
c806fef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc2077
 
9063698
53feeb3
1cc2077
 
 
 
 
b90013e
1cc2077
 
 
 
c806fef
 
 
 
 
1cc2077
 
 
 
 
 
 
 
 
b90013e
1cc2077
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']

import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt

from src.about import *
from src.bin.PROBE import run_probe

global data_component, filter_component

def get_baseline_df():
    df = pd.read_csv(CSV_RESULT_PATH)
    present_columns = ["Method"] + checkbox_group.value
    df = df[present_columns]
    return df

# Function to create the plot
def create_plot(methods_selected, x_metric, y_metric):
    df = pd.read_csv(CSV_RESULT_PATH)
    filtered_df = df[df['Method'].isin(methods_selected)]
    
    # Create a larger plot
    plt.figure(figsize=(10, 8))  # Increase the figure size
    for method in methods_selected:
        method_data = filtered_df[filtered_df['Method'] == method]
        plt.plot(method_data[x_metric], method_data[y_metric], label=method, marker='o')
    
    plt.xlabel(x_metric)
    plt.ylabel(y_metric)
    plt.title(f'{y_metric} vs {x_metric} for selected methods')
    plt.legend()
    plt.grid(True)
    
    # Save the plot to display it in Gradio
    plot_path = "plot.png"
    plt.savefig(plot_path)
    plt.close()
    
    return plot_path

def add_new_eval(
    human_file,
    skempi_file,
    model_name_textbox: str,
    revision_name_textbox: str,
    benchmark_type,
    similarity_tasks,
    function_prediction_aspect,
    function_prediction_dataset,
    family_prediction_dataset,
):
    representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
    results = run_probe(benchmark_type, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)
    return None

block = gr.Blocks()

with block:
    gr.Markdown(LEADERBOARD_INTRODUCTION)
    
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # table jmmmu bench
        with gr.TabItem("🏅 PROBE Benchmark", elem_id="probe-benchmark-tab-table", id=1):
            
            # Add the visualizer components (Dropdown, Checkbox, Button, Image)
            with gr.Row():
                method_names = pd.read_csv(CSV_RESULT_PATH)['Method'].unique().tolist()
                metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist()
                metric_names.remove('Method')  # Remove Method from the metric options

                # Visualizer Controls: Smaller and underneath each other
                with gr.Column(scale=1):
                    method_selector = gr.CheckboxGroup(choices=method_names, label="Select Methods", interactive=True)
                    x_metric_selector = gr.Dropdown(choices=metric_names, label="Select X-axis Metric", interactive=True)
                    y_metric_selector = gr.Dropdown(choices=metric_names, label="Select Y-axis Metric", interactive=True)
                    plot_button = gr.Button("Plot")
                
                # Larger plot display
                with gr.Column(scale=3):
                    output_plot = gr.Image(label="Plot", height=480)  # Set larger height for the plot
                
            plot_button.click(create_plot, inputs=[method_selector, x_metric_selector, y_metric_selector], outputs=output_plot)
            
            # Now the rest of the UI elements as they were before
            checkbox_group = gr.CheckboxGroup(
                choices=TASK_INFO,
                label="Benchmark Type",
                interactive=True,
            )  # User can select the evaluation dimension
            
            baseline_value = get_baseline_df()
            baseline_header = ["Method"] + checkbox_group.value
            baseline_datatype = ['markdown'] + ['number'] * len(checkbox_group.value)
            
            data_component = gr.components.Dataframe(
                value=baseline_value,
                headers=baseline_header,
                type="pandas",
                datatype=baseline_datatype,
                interactive=False,
                visible=True,
            )

        # table 5
        with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
            with gr.Row():
                gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
            with gr.Row():
                gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name",
                    )
                    revision_name_textbox = gr.Textbox(
                        label="Revision Model Name",
                    )
                    
                    benchmark_type = gr.CheckboxGroup(
                        choices=TASK_INFO,
                        label="Benchmark Type",
                        interactive=True,
                    )
                    similarity_tasks = gr.CheckboxGroup(
                        choices=similarity_tasks_options,
                        label="Select Similarity Tasks",
                        interactive=True,
                    )
                
                    function_prediction_aspect = gr.Radio(
                        choices=function_prediction_aspect_options,
                        label="Select Function Prediction Aspect",
                        interactive=True,
                    )
                
                    function_prediction_dataset = gr.Radio(
                        choices=function_prediction_dataset_options,
                        label="Select Function Prediction Dataset",
                        interactive=True,
                    )
                
                    family_prediction_dataset = gr.CheckboxGroup(
                        choices=family_prediction_dataset_options,
                        label="Select Family Prediction Dataset",
                        interactive=True,
                    )

            with gr.Column():
                human_file = gr.components.File(label="Click to Upload the representation file (csv) for Human dataset", file_count="single", type='filepath')
                skempi_file = gr.components.File(label="Click to Upload the representation file (csv) for SKEMPI dataset", file_count="single", type='filepath')
    
                submit_button = gr.Button("Submit Eval")
                submission_result = gr.Markdown()
                submit_button.click(
                    add_new_eval,
                    inputs=[
                        human_file,
                        skempi_file,
                        model_name_textbox,
                        revision_name_textbox,
                        benchmark_type,
                        similarity_tasks,
                        function_prediction_aspect,
                        function_prediction_dataset,
                        family_prediction_dataset,
                    ],
                )

    def refresh_data():
        value = get_baseline_df()
        return value

    with gr.Row():
        data_run = gr.Button("Refresh")
        data_run.click(refresh_data, outputs=[data_component])

    with gr.Accordion("Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            show_copy_button=True,
        )

block.launch()