Spaces:
Sleeping
Sleeping
File size: 7,739 Bytes
1cc2077 25f445b b90013e 1cc2077 a2e6203 1cc2077 b90013e 363f92a b90013e 53feeb3 1cc2077 d10decd 1cc2077 d10decd 1cc2077 b90013e 1cc2077 b90013e 363f92a b90013e 363f92a b90013e 363f92a b90013e 1cc2077 b90013e 1cc2077 b90013e 1cc2077 b90013e 1cc2077 b90013e 1cc2077 b90013e 1cc2077 c806fef 1cc2077 9063698 53feeb3 1cc2077 b90013e 1cc2077 c806fef 1cc2077 b90013e 1cc2077 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
from src.about import *
from src.bin.PROBE import run_probe
global data_component, filter_component
def get_baseline_df():
df = pd.read_csv(CSV_RESULT_PATH)
present_columns = ["Method"] + checkbox_group.value
df = df[present_columns]
return df
# Function to create the plot
def create_plot(methods_selected, x_metric, y_metric):
df = pd.read_csv(CSV_RESULT_PATH)
filtered_df = df[df['Method'].isin(methods_selected)]
# Create a larger plot
plt.figure(figsize=(10, 8)) # Increase the figure size
for method in methods_selected:
method_data = filtered_df[filtered_df['Method'] == method]
plt.plot(method_data[x_metric], method_data[y_metric], label=method, marker='o')
plt.xlabel(x_metric)
plt.ylabel(y_metric)
plt.title(f'{y_metric} vs {x_metric} for selected methods')
plt.legend()
plt.grid(True)
# Save the plot to display it in Gradio
plot_path = "plot.png"
plt.savefig(plot_path)
plt.close()
return plot_path
def add_new_eval(
human_file,
skempi_file,
model_name_textbox: str,
revision_name_textbox: str,
benchmark_type,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
):
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
results = run_probe(benchmark_type, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)
return None
block = gr.Blocks()
with block:
gr.Markdown(LEADERBOARD_INTRODUCTION)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# table jmmmu bench
with gr.TabItem("🏅 PROBE Benchmark", elem_id="probe-benchmark-tab-table", id=1):
# Add the visualizer components (Dropdown, Checkbox, Button, Image)
with gr.Row():
method_names = pd.read_csv(CSV_RESULT_PATH)['Method'].unique().tolist()
metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist()
metric_names.remove('Method') # Remove Method from the metric options
# Visualizer Controls: Smaller and underneath each other
with gr.Column(scale=1):
method_selector = gr.CheckboxGroup(choices=method_names, label="Select Methods", interactive=True)
x_metric_selector = gr.Dropdown(choices=metric_names, label="Select X-axis Metric", interactive=True)
y_metric_selector = gr.Dropdown(choices=metric_names, label="Select Y-axis Metric", interactive=True)
plot_button = gr.Button("Plot")
# Larger plot display
with gr.Column(scale=3):
output_plot = gr.Image(label="Plot", height=480) # Set larger height for the plot
plot_button.click(create_plot, inputs=[method_selector, x_metric_selector, y_metric_selector], outputs=output_plot)
# Now the rest of the UI elements as they were before
checkbox_group = gr.CheckboxGroup(
choices=TASK_INFO,
label="Benchmark Type",
interactive=True,
) # User can select the evaluation dimension
baseline_value = get_baseline_df()
baseline_header = ["Method"] + checkbox_group.value
baseline_datatype = ['markdown'] + ['number'] * len(checkbox_group.value)
data_component = gr.components.Dataframe(
value=baseline_value,
headers=baseline_header,
type="pandas",
datatype=baseline_datatype,
interactive=False,
visible=True,
)
# table 5
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
with gr.Row():
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name",
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name",
)
benchmark_type = gr.CheckboxGroup(
choices=TASK_INFO,
label="Benchmark Type",
interactive=True,
)
similarity_tasks = gr.CheckboxGroup(
choices=similarity_tasks_options,
label="Select Similarity Tasks",
interactive=True,
)
function_prediction_aspect = gr.Radio(
choices=function_prediction_aspect_options,
label="Select Function Prediction Aspect",
interactive=True,
)
function_prediction_dataset = gr.Radio(
choices=function_prediction_dataset_options,
label="Select Function Prediction Dataset",
interactive=True,
)
family_prediction_dataset = gr.CheckboxGroup(
choices=family_prediction_dataset_options,
label="Select Family Prediction Dataset",
interactive=True,
)
with gr.Column():
human_file = gr.components.File(label="Click to Upload the representation file (csv) for Human dataset", file_count="single", type='filepath')
skempi_file = gr.components.File(label="Click to Upload the representation file (csv) for SKEMPI dataset", file_count="single", type='filepath')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs=[
human_file,
skempi_file,
model_name_textbox,
revision_name_textbox,
benchmark_type,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
],
)
def refresh_data():
value = get_baseline_df()
return value
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(refresh_data, outputs=[data_component])
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
block.launch()
|