File size: 4,328 Bytes
1cc2077
 
 
 
 
 
 
 
25f445b
1cc2077
 
a2e6203
1cc2077
 
 
 
 
 
 
 
 
 
53feeb3
1cc2077
 
 
 
 
 
 
 
53feeb3
a2e6203
 
1cc2077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9063698
53feeb3
1cc2077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']

import gradio as gr
import pandas as pd
import re
import pandas as pd
import os
import json
import yaml

from src.about import *
from src.bin.PROBE import run_probe

global data_component, filter_component


def get_baseline_df():
    df = pd.read_csv(CSV_RESULT_PATH)
    present_columns = ["Method"] + checkbox_group.value
    df = df[present_columns]
    return df


def add_new_eval(
    human_file,
    skempi_file,
    model_name_textbox: str,
    revision_name_textbox: str,
    benchmark_type: str,
):
    representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox

    run_probe(benchmark_type, representation_name, human_file, skempi_file)
        

    return None

block = gr.Blocks()

with block:
    gr.Markdown(
        LEADERBOARD_INTRODUCTION
    )
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # table jmmmu bench
        with gr.TabItem("🏅 PROBE Benchmark", elem_id="probe-benchmark-tab-table", id=1):
            # selection for column part:
            checkbox_group = gr.CheckboxGroup(
                choices=TASK_INFO,
                label="Benchmark Type",
                interactive=True,
            ) # user can select the evaluation dimension

            baseline_value = get_baseline_df()
            baseline_header = ["Method"] + checkbox_group.value
            baseline_datatype = ['markdown'] + ['number'] * len(checkbox_group.value)

            data_component = gr.components.Dataframe(
                value=baseline_value,
                headers=baseline_header,
                type="pandas",
                datatype=baseline_datatype,
                interactive=False,
                visible=True,
                )

        # table 5
        with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
            with gr.Row():
                gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
            with gr.Row():
                gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name",
                        )
                    revision_name_textbox = gr.Textbox(
                        label="Revision Model Name",
                    )
                    # Selection for benchmark type from (similartiy, family, function, affinity) to eval the representations (chekbox)
                    benchmark_type = gr.CheckboxGroup(
                        choices=TASK_INFO,
                        label="Benchmark Type",
                        interactive=True,
                    )

            with gr.Column():
                human_file = gr.components.File(label="Click to Upload the representation file (csv) for Human dataset", file_count="single", type='filepath')
                skempi_file = gr.components.File(label="Click to Upload the representation file (csv) for SKEMPI dataset", file_count="single", type='filepath')
    
                submit_button = gr.Button("Submit Eval")
                submission_result = gr.Markdown()
                submit_button.click(
                    add_new_eval,
                    inputs = [
                        human_file,
                        skempi_file,
                        model_name_textbox,
                        revision_name_textbox,
                        benchmark_type
                    ],
                )

    def refresh_data():
        value = get_baseline_df()

        return value

    with gr.Row():
        data_run = gr.Button("Refresh")
        data_run.click(
            refresh_data, outputs=[data_component]
        )

    with gr.Accordion("Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            show_copy_button=True,
        )

block.launch()