PROBE / src /saving_utils.py
mgyigit's picture
Update src/saving_utils.py
c67e10b verified
import os
import pandas as pd
from huggingface_hub import HfApi
script_dir = os.path.dirname(os.path.abspath(__file__)) # Directory of the running script
def get_baseline_df(selected_methods, selected_metrics, leaderboard_path="/tmp/leaderboard_results.csv"):
if not os.path.exists(leaderboard_path):
benchmark_types = [] #only download leaderboard
download_from_hub(benchmark_types)
leaderboard_df = pd.read_csv(leaderboard_path)
if selected_methods is not None and selected_metrics is not None:
present_columns = ["Method"] + selected_metrics
leaderboard_df = leaderboard_df[leaderboard_df['Method'].isin(selected_methods)][present_columns]
return leaderboard_df
def save_results(method_name, benchmark_types, results, repo_id="HUBioDataLab/probe-data", repo_type="space"):
#First, download files to be updated from {repo_id}
download_from_hub(benchmark_types, repo_id, repo_type)
#Update local files
for benchmark_type in benchmark_types:
if benchmark_type == 'similarity':
save_similarity_output(results['similarity'], method_name)
elif benchmark_type == 'function':
save_function_output(results['function'], method_name)
elif benchmark_type == 'family':
save_family_output(results['family'], method_name)
elif benchmark_type == "affinity":
save_affinity_output(results['affinity'], method_name)
#Upload local files to the {repo_id}
upload_to_hub(benchmark_types, repo_id, repo_type)
return 0
def download_from_hub(benchmark_types, repo_id="HUBioDataLab/probe-data", repo_type="space"):
api = HfApi(token=os.getenv("api-key")) #load api-key secret
benchmark_types.append("leaderboard")
for benchmark in benchmark_types:
file_name = f"{benchmark}_results.csv"
local_path = f"/tmp/{file_name}"
try:
# Download the file from the specified repo
api.hf_hub_download(
repo_id=repo_id,
repo_type=repo_type,
filename=file_name,
local_dir="/tmp",
token=os.getenv("api-key"),
)
print(f"Downloaded {file_name} from {repo_id} to {local_path}")
except Exception as e:
print(f"Failed to download {file_name}: {e}")
return 0
def upload_to_hub(benchmark_types, repo_id="HUBioDataLab/probe-data", repo_type="space"):
api = HfApi(token=os.getenv("api_key")) # Requires authentication via HF_TOKEN
for benchmark in benchmark_types:
file_name = f"{benchmark}_results.csv"
local_path = f"/tmp/{file_name}"
api.upload_file(
path_or_fileobj=local_path,
path_in_repo=file_name,
repo_id=repo_id,
repo_type=repo_type,
commit_message=f"Updating {file_name}"
)
print(f"Uploaded {local_path} to {repo_id}/{file_name}")
os.remove(local_path)
print(f"Removed local file: {local_path}")
return 0
def save_similarity_output(
output_dict,
method_name,
leaderboard_path="/tmp/leaderboard_results.csv",
similarity_path="/tmp/similarity_results.csv",
):
# Load or initialize the DataFrames
if os.path.exists(leaderboard_path):
leaderboard_df = pd.read_csv(leaderboard_path)
else:
print("Leaderboard file not found!")
return -1
if os.path.exists(similarity_path):
similarity_df = pd.read_csv(similarity_path)
else:
print("Similarity file not found!")
return -1
if method_name not in similarity_df['Method'].values:
# Create a new row for the method with default values
new_row = {col: None for col in similarity_df.columns}
new_row['Method'] = method_name
similarity_df = pd.concat([similarity_df, pd.DataFrame([new_row])], ignore_index=True)
if method_name not in leaderboard_df['Method'].values:
new_row = {col: None for col in leaderboard_df.columns}
new_row['Method'] = method_name
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)
averages = {}
for dataset in ['sparse', '200', '500']:
correlation_values = []
pvalue_values = []
for aspect in ['MF', 'BP', 'CC']:
correlation_key = f"{dataset}_{aspect}_correlation"
pvalue_key = f"{dataset}_{aspect}_pvalue"
# Update correlation if present
if correlation_key in output_dict:
correlation = output_dict[correlation_key].item()
correlation_values.append(correlation)
similarity_df.loc[similarity_df['Method'] == method_name, correlation_key] = correlation
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{correlation_key}"] = correlation
# Update p-value if present
if pvalue_key in output_dict:
pvalue = output_dict[pvalue_key].item()
pvalue_values.append(pvalue)
similarity_df.loc[similarity_df['Method'] == method_name, pvalue_key] = pvalue
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{pvalue_key}"] = pvalue
# Calculate averages if all three aspects are present
if len(correlation_values) == 3:
averages[f"{dataset}_Ave_correlation"] = sum(correlation_values) / 3
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
if len(pvalue_values) == 3:
averages[f"{dataset}_Ave_pvalue"] = sum(pvalue_values) / 3
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
leaderboard_df.to_csv(leaderboard_path, index=False)
similarity_df.to_csv(similarity_path, index=False)
return 0
def save_function_output(
model_output,
method_name,
func_results_path="/tmp/function_results.csv",
leaderboard_path="/tmp/leaderboard_results.csv"
):
# Load or initialize the DataFrames
if os.path.exists(leaderboard_path):
leaderboard_df = pd.read_csv(leaderboard_path)
else:
print("Leaderboard file not found!")
return -1
if os.path.exists(func_results_path):
func_results_df = pd.read_csv(func_results_path)
else:
print("Function file not found!")
return -1
if method_name not in func_results_df['Method'].values:
# Create a new row for the method with default values
new_row = {col: None for col in func_results_df.columns}
new_row['Method'] = method_name
func_results_df = pd.concat([func_results_df, pd.DataFrame([new_row])], ignore_index=True)
if method_name not in leaderboard_df['Method'].values:
new_row = {col: None for col in leaderboard_df.columns}
new_row['Method'] = method_name
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)
# Storage for averaging in leaderboard results
metrics_sum = {
'accuracy': {'BP': [], 'CC': [], 'MF': []},
'F1': {'BP': [], 'CC': [], 'MF': []},
'precision': {'BP': [], 'CC': [], 'MF': []},
'recall': {'BP': [], 'CC': [], 'MF': []}
}
# Iterate over each entry in model_output
for entry in model_output:
key = entry[0]
accuracy, f1, precision, recall = entry[1], entry[4], entry[7], entry[10]
# Parse the key to extract the aspect and datasets
aspect, dataset1, dataset2 = key.split('_')
# Save each metric to function_results under its respective column
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_accuracy"] = accuracy
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_F1"] = f1
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_precision"] = precision
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_recall"] = recall
# Add values for leaderboard averaging
metrics_sum['accuracy'][aspect].append(accuracy)
metrics_sum['F1'][aspect].append(f1)
metrics_sum['precision'][aspect].append(precision)
metrics_sum['recall'][aspect].append(recall)
# Calculate averages for each aspect and overall (if all aspects have entries)
for metric in ['accuracy', 'F1', 'precision', 'recall']:
for aspect in ['BP', 'CC', 'MF']:
if metrics_sum[metric][aspect]:
aspect_average = sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"func_{aspect}_{metric}"] = aspect_average
# Calculate overall average if each aspect has entries
if all(metrics_sum[metric][aspect] for aspect in ['BP', 'CC', 'MF']):
overall_average = sum(
sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
for aspect in ['BP', 'CC', 'MF']
) / 3
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"func_Ave_{metric}"] = overall_average
# Save updated DataFrames to CSV
func_results_df.to_csv(func_results_path, index=False)
leaderboard_df.to_csv(leaderboard_path, index=False)
return 0
def save_family_output(
model_output,
method_name,
leaderboard_path="/tmp/leaderboard_results.csv",
family_results_path="/tmp/family_results.csv"
):
# Load or initialize the DataFrames
if os.path.exists(leaderboard_path):
leaderboard_df = pd.read_csv(leaderboard_path)
else:
print("Leaderboard file not found!")
return -1
if os.path.exists(family_results_path):
family_results_df = pd.read_csv(family_results_path)
else:
print("Family file not found!")
return -1
if method_name not in family_results_df['Method'].values:
# Create a new row for the method with default values
new_row = {col: None for col in family_results_df.columns}
new_row['Method'] = method_name
family_results_df = pd.concat([family_results_df, pd.DataFrame([new_row])], ignore_index=True)
if method_name not in leaderboard_df['Method'].values:
new_row = {col: None for col in leaderboard_df.columns}
new_row['Method'] = method_name
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)
# Iterate through the datasets and metrics
for dataset, metrics in model_output.items():
for metric, values in metrics.items():
# Calculate the average for each metric in leaderboard results
avg_value = sum(values) / len(values) if values else None
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"fam_{dataset}_{metric}_ave"] = avg_value
# Save each fold result for family results
for i, value in enumerate(values):
family_results_df.loc[family_results_df['Method'] == method_name, f"{dataset}_{metric}_{i}"] = value
# Save updated DataFrames to CSV
leaderboard_df.to_csv(leaderboard_path, index=False)
family_results_df.to_csv(family_results_path, index=False)
return 0
def save_affinity_output(
model_output,
method_name,
leaderboard_path="/tmp/leaderboard_results.csv",
affinity_results_path="/tmp/affinity_results.csv"
):
# Load or initialize the DataFrames
if os.path.exists(leaderboard_path):
leaderboard_df = pd.read_csv(leaderboard_path)
else:
print("Leaderboard file not found!")
return -1
if os.path.exists(affinity_results_path):
affinity_results_df = pd.read_csv(affinity_results_path)
else:
print("Affinity file not found!")
return -1
if method_name not in affinity_results_df['Method'].values:
# Create a new row for the method with default values
new_row = {col: None for col in affinity_results_df.columns}
new_row['Method'] = method_name
affinity_results_df = pd.concat([affinity_results_df, pd.DataFrame([new_row])], ignore_index=True)
if method_name not in leaderboard_df['Method'].values:
new_row = {col: None for col in leaderboard_df.columns}
new_row['Method'] = method_name
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)
# Process 'summary' section for leaderboard results
summary = model_output.get('summary', {})
if summary:
leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_mse_ave'] = summary.get('val_mse_error')
leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_mae_ave'] = summary.get('val_mae_error')
leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_corr_ave'] = summary.get('validation_corr')
# Process 'detail' section for affinity results
detail = model_output.get('detail', {})
if detail:
# Save each 10-fold cross-validation result for mse, mae, and corr
for i in range(10):
if 'val_mse_errors' in detail:
affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"mse_{i}"] = detail['val_mse_errors'][i]
if 'val_mae_errors' in detail:
affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"mae_{i}"] = detail['val_mae_errors'][i]
if 'validation_corrs' in detail:
affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"correlation_{i}"] = detail['validation_corrs'][i]
# Save updated DataFrames to CSV
leaderboard_df.to_csv(leaderboard_path, index=False)
affinity_results_df.to_csv(affinity_results_path, index=False)
return 0