Spaces:
Sleeping
Sleeping
Update src/bin/target_family_classifier.py
Browse files- src/bin/target_family_classifier.py +54 -134
src/bin/target_family_classifier.py
CHANGED
@@ -4,27 +4,18 @@ Created on Mon Jun 8 09:32:26 2020
|
|
4 |
|
5 |
@author: Muammer
|
6 |
"""
|
7 |
-
import os
|
8 |
-
script_dir = os.path.dirname(os.path.abspath(__file__))
|
9 |
-
|
10 |
import numpy as np
|
11 |
-
from sklearn.model_selection import cross_validate
|
12 |
-
from sklearn.model_selection import cross_val_predict
|
13 |
-
from sklearn.metrics import matthews_corrcoef
|
14 |
-
from sklearn.metrics import classification_report
|
15 |
-
from sklearn.multiclass import OneVsRestClassifier
|
16 |
-
from sklearn import linear_model
|
17 |
-
from sklearn.metrics import f1_score
|
18 |
-
from sklearn.metrics import confusion_matrix
|
19 |
from sklearn.model_selection import train_test_split
|
20 |
-
|
21 |
-
from
|
22 |
-
|
|
|
|
|
|
|
23 |
from tqdm import tqdm
|
24 |
-
from sklearn.metrics import accuracy_score
|
25 |
import math
|
26 |
|
27 |
-
|
28 |
representation_name = ""
|
29 |
representation_path = ""
|
30 |
dataset = "nc"
|
@@ -33,68 +24,40 @@ detailed_output = False
|
|
33 |
def convert_dataframe_to_multi_col(representation_dataframe):
|
34 |
entry = pd.DataFrame(representation_dataframe['Entry'])
|
35 |
vector = pd.DataFrame(list(representation_dataframe['Vector']))
|
36 |
-
multi_col_representation_vector = pd.merge(left=entry,right=vector,left_index=True, right_index=True)
|
37 |
return multi_col_representation_vector
|
38 |
|
39 |
def class_based_scores(c_report, c_matrix):
|
40 |
c_report = pd.DataFrame(c_report).transpose()
|
41 |
-
#print(c_report)
|
42 |
c_report = c_report.drop(['precision', 'recall'], axis=1)
|
43 |
c_report = c_report.drop(labels=['accuracy', 'macro avg', 'weighted avg'], axis=0)
|
|
|
44 |
cm = c_matrix.astype('float') / c_matrix.sum(axis=1)[:, np.newaxis]
|
45 |
-
#print(c_report)
|
46 |
accuracy = cm.diagonal()
|
47 |
-
|
48 |
-
#print(accuracy)
|
49 |
-
#if len(accuracy) == 6:
|
50 |
-
# accuracy = np.delete(accuracy, 5)
|
51 |
-
|
52 |
accuracy = pd.Series(accuracy, index=c_report.index)
|
53 |
c_report['accuracy'] = accuracy
|
54 |
|
55 |
total = c_report['support'].sum()
|
56 |
-
#print(total)
|
57 |
num_classes = np.shape(c_matrix)[0]
|
58 |
mcc = np.zeros(shape=(num_classes,), dtype='float32')
|
59 |
-
weights = np.sum(c_matrix, axis=0)/np.sum(c_matrix)
|
60 |
-
total_tp = 0
|
61 |
-
total_fp = 0
|
62 |
-
total_fn = 0
|
63 |
-
total_tn = 0
|
64 |
|
65 |
for j in range(num_classes):
|
66 |
tp = np.sum(c_matrix[j, j])
|
67 |
fp = np.sum(c_matrix[j, np.concatenate((np.arange(0, j), np.arange(j+1, num_classes)))])
|
68 |
fn = np.sum(c_matrix[np.concatenate((np.arange(0, j), np.arange(j+1, num_classes))), j])
|
69 |
tn = int(total - tp - fp - fn)
|
70 |
-
|
71 |
-
|
72 |
-
total_fn = total_fn + fn
|
73 |
-
total_tn = total_tn + tn
|
74 |
-
#print(tp,fp,fn,tn)
|
75 |
-
mcc[j] = ((tp*tn)-(fp*fn))/math.sqrt((tp+fp)*(tp+fn)*(tn+fp)*(tn+fn))
|
76 |
-
#print(mcc)
|
77 |
-
#if len(mcc) == 6:
|
78 |
-
# mcc = np.delete(mcc, 5)
|
79 |
-
|
80 |
mcc = pd.Series(mcc, index=c_report.index)
|
81 |
c_report['mcc'] = mcc
|
82 |
-
#c_report.to_excel('../results/resultss_class_based_'+dataset+'.xlsx')
|
83 |
-
#print(c_report)
|
84 |
-
return c_report, total_tp, total_fp, total_fn, total_tn
|
85 |
-
|
86 |
|
|
|
87 |
|
88 |
def score_protein_rep(dataset):
|
89 |
-
#def score_protein_rep(pkl_data_path):
|
90 |
-
|
91 |
-
vecsize = 0
|
92 |
-
#protein_list = pd.read_csv('../data/auxilary_input/entry_class.csv')
|
93 |
protein_list = pd.read_csv(os.path.join(script_dir, '../data/preprocess/entry_class_nn.csv'))
|
94 |
dataframe = pd.read_csv(representation_path)
|
95 |
-
|
96 |
-
|
97 |
-
vecsize = dataframe.shape[1]-1
|
98 |
x = np.empty([0, vecsize])
|
99 |
xemp = np.zeros((1, vecsize), dtype=float)
|
100 |
y = []
|
@@ -104,125 +67,82 @@ def score_protein_rep(dataset):
|
|
104 |
for index, row in tqdm(protein_list.iterrows(), total=len(protein_list)):
|
105 |
pdrow = dataframe.loc[dataframe['Entry'] == row['Entry']]
|
106 |
if len(pdrow) != 0:
|
107 |
-
a = pdrow.loc[
|
108 |
a = np.array(a)
|
109 |
-
a.shape = (1,vecsize)
|
110 |
x = np.append(x, a, axis=0)
|
111 |
y.append(row['Class'])
|
112 |
else:
|
113 |
ne.append(index)
|
114 |
-
x = np.append(x, xemp, axis=0
|
115 |
y.append(0.0)
|
116 |
-
#print(index)
|
117 |
|
118 |
x = x.astype(np.float64)
|
119 |
y = np.array(y)
|
120 |
y = y.astype(np.float64)
|
121 |
-
|
122 |
-
scoring = ['precision_weighted', 'recall_weighted', 'f1_weighted', 'accuracy']
|
123 |
target_names = ['Enzyme', 'Membrane receptor', 'Transcription factor', 'Ion channel', 'Other']
|
124 |
labels = [1.0, 11.0, 12.0, 1005.0, 2000.0]
|
125 |
-
|
126 |
f1 = []
|
127 |
accuracy = []
|
128 |
mcc = []
|
129 |
-
f1_perclass = []
|
130 |
-
ac_perclass = []
|
131 |
-
mcc_perclass = []
|
132 |
-
sup_perclass = []
|
133 |
report_list = []
|
134 |
-
|
|
|
135 |
test_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/testindex_family.csv'))
|
136 |
-
train_index = train_index.dropna(axis=1)
|
137 |
test_index = test_index.dropna(axis=1)
|
138 |
-
#print(train_index)
|
139 |
-
#for index in ne:
|
140 |
-
|
141 |
|
142 |
-
|
143 |
|
144 |
print('Producing protein family predictions...\n')
|
145 |
-
for i in tqdm(range(10)):
|
146 |
-
clf = linear_model.SGDClassifier(class_weight="balanced", loss="log", penalty="elasticnet", max_iter=1000, tol=1e-3,random_state=i,n_jobs=-1)
|
147 |
-
clf2 = OneVsRestClassifier(clf,n_jobs=-1)
|
148 |
-
|
149 |
train_indexx = train_index.iloc[i].astype(int)
|
150 |
test_indexx = test_index.iloc[i].astype(int)
|
151 |
-
#print(train_indexx)
|
152 |
-
#train_indexx.drop(labels=ne)
|
153 |
-
#print(type(train_indexx))
|
154 |
-
for index in ne:
|
155 |
-
|
156 |
-
train_indexx = train_indexx[train_indexx!=index]
|
157 |
-
test_indexx = test_indexx[test_indexx!=index]
|
158 |
-
|
159 |
|
|
|
|
|
|
|
160 |
|
161 |
train_X, test_X = x[train_indexx], x[test_indexx]
|
162 |
train_y, test_y = y[train_indexx], y[test_indexx]
|
163 |
|
164 |
-
clf2.fit(train_X, train_y)
|
165 |
-
|
166 |
-
#print(train_X)
|
167 |
y_pred = clf2.predict(test_X)
|
168 |
-
|
169 |
-
#y_pred = cross_val_predict(clf2, x, y, cv=10, n_jobs=-1)
|
170 |
-
#mcc.append(matthews_corrcoef(test_y, y_pred, sample_weight = test_y))
|
171 |
f1_ = f1_score(test_y, y_pred, average='weighted')
|
172 |
f1.append(f1_)
|
|
|
173 |
ac = accuracy_score(test_y, y_pred)
|
174 |
accuracy.append(ac)
|
|
|
175 |
c_report = classification_report(test_y, y_pred, target_names=target_names, output_dict=True)
|
176 |
c_matrix = confusion_matrix(test_y, y_pred, labels=labels)
|
|
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
#print(total_tp)
|
182 |
-
mcc.append(((tp*tn)-(fp*fn))/math.sqrt((tp+fp)*(tp+fn)*(tn+fp)*(tn+fn)))
|
183 |
-
|
184 |
|
185 |
-
f1_perclass.append(class_report['f1-score'])
|
186 |
-
ac_perclass.append(class_report['accuracy'])
|
187 |
-
mcc_perclass.append(class_report['mcc'])
|
188 |
-
sup_perclass.append(class_report['support'])
|
189 |
report_list.append(class_report)
|
190 |
-
|
191 |
-
if detailed_output:
|
192 |
-
conf.to_csv(os.path.join(script_dir, '../results/Drug_target_protein_family_classification_confusion_'+dataset+'_'+representation_name+'.csv'), index=None)
|
193 |
-
|
194 |
-
f1_perclass = pd.concat(f1_perclass, axis=1)
|
195 |
-
ac_perclass = pd.concat(ac_perclass, axis=1)
|
196 |
-
mcc_perclass = pd.concat(mcc_perclass, axis=1)
|
197 |
-
sup_perclass = pd.concat(sup_perclass, axis=1)
|
198 |
-
|
199 |
-
report_list = pd.concat(report_list, axis=1)
|
200 |
-
report_list.to_csv(os,path,join(script_dir, '../results/Drug_target_protein_family_classification_class_based_results_'+dataset+'_'+representation_name+'.csv'))
|
201 |
-
|
202 |
-
report = pd.DataFrame()
|
203 |
-
f1mean = np.mean(f1, axis=0)
|
204 |
-
#print(f1mean)
|
205 |
-
f1mean = f1mean.round(decimals=5)
|
206 |
-
f1std = np.std(f1).round(decimals=5)
|
207 |
-
acmean = np.mean(accuracy, axis=0).round(decimals=5)
|
208 |
-
acstd = np.std(accuracy).round(decimals=5)
|
209 |
-
mccmean = np.mean(mcc, axis=0).round(decimals=5)
|
210 |
-
mccstd = np.std(mcc).round(decimals=5)
|
211 |
-
labels = ['Average Score', 'Standard Deviation']
|
212 |
-
report['Protein Family'] = labels
|
213 |
-
report['F1_score'] = [f1mean, f1std]
|
214 |
-
report['Accuracy'] = [acmean, acstd]
|
215 |
-
report['MCC'] = [mccmean, mccstd]
|
216 |
-
|
217 |
-
report.to_csv(os.path.join(script_dir, '../results/Drug_target_protein_family_classification_mean_results_'+dataset+'_'+representation_name+'.csv',index=False))
|
218 |
-
#report.to_csv('scores_general.csv')
|
219 |
-
#print(report)
|
220 |
-
if detailed_output:
|
221 |
-
save('../results/Drug_target_protein_family_classification_f1_'+dataset+'_'+representation_name+'.npy', f1)
|
222 |
-
save('../results/Drug_target_protein_family_classification_accuracy_'+dataset+'_'+representation_name+'.npy', accuracy)
|
223 |
-
save('../results/Drug_target_protein_family_classification_mcc_'+dataset+'_'+representation_name+'.npy', mcc)
|
224 |
-
save('../results/Drug_target_protein_family_classification_class_based_f1_'+dataset+'_'+representation_name+'.npy', f1_perclass)
|
225 |
-
save('../results/Drug_target_protein_family_classification_class_based_accuracy_'+dataset+'_'+representation_name+'.npy', ac_perclass)
|
226 |
-
save('../results/Drug_target_protein_family_classification_class_based_mcc_'+dataset+'_'+representation_name+'.npy', mcc_perclass)
|
227 |
-
save('../results/Drug_target_protein_family_classification_class_based_support_'+dataset+'_'+representation_name+'.npy', sup_perclass)
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
@author: Muammer
|
6 |
"""
|
7 |
+
import os
|
|
|
|
|
8 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from sklearn.model_selection import train_test_split
|
10 |
+
from sklearn import linear_model
|
11 |
+
from sklearn.metrics import (
|
12 |
+
f1_score, accuracy_score, confusion_matrix, classification_report, matthews_corrcoef
|
13 |
+
)
|
14 |
+
from sklearn.multiclass import OneVsRestClassifier
|
15 |
+
import pandas as pd
|
16 |
from tqdm import tqdm
|
|
|
17 |
import math
|
18 |
|
|
|
19 |
representation_name = ""
|
20 |
representation_path = ""
|
21 |
dataset = "nc"
|
|
|
24 |
def convert_dataframe_to_multi_col(representation_dataframe):
|
25 |
entry = pd.DataFrame(representation_dataframe['Entry'])
|
26 |
vector = pd.DataFrame(list(representation_dataframe['Vector']))
|
27 |
+
multi_col_representation_vector = pd.merge(left=entry, right=vector, left_index=True, right_index=True)
|
28 |
return multi_col_representation_vector
|
29 |
|
30 |
def class_based_scores(c_report, c_matrix):
|
31 |
c_report = pd.DataFrame(c_report).transpose()
|
|
|
32 |
c_report = c_report.drop(['precision', 'recall'], axis=1)
|
33 |
c_report = c_report.drop(labels=['accuracy', 'macro avg', 'weighted avg'], axis=0)
|
34 |
+
|
35 |
cm = c_matrix.astype('float') / c_matrix.sum(axis=1)[:, np.newaxis]
|
|
|
36 |
accuracy = cm.diagonal()
|
|
|
|
|
|
|
|
|
|
|
37 |
accuracy = pd.Series(accuracy, index=c_report.index)
|
38 |
c_report['accuracy'] = accuracy
|
39 |
|
40 |
total = c_report['support'].sum()
|
|
|
41 |
num_classes = np.shape(c_matrix)[0]
|
42 |
mcc = np.zeros(shape=(num_classes,), dtype='float32')
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
for j in range(num_classes):
|
45 |
tp = np.sum(c_matrix[j, j])
|
46 |
fp = np.sum(c_matrix[j, np.concatenate((np.arange(0, j), np.arange(j+1, num_classes)))])
|
47 |
fn = np.sum(c_matrix[np.concatenate((np.arange(0, j), np.arange(j+1, num_classes))), j])
|
48 |
tn = int(total - tp - fp - fn)
|
49 |
+
mcc[j] = ((tp * tn) - (fp * fn)) / math.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
|
50 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
mcc = pd.Series(mcc, index=c_report.index)
|
52 |
c_report['mcc'] = mcc
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
return c_report
|
55 |
|
56 |
def score_protein_rep(dataset):
|
|
|
|
|
|
|
|
|
57 |
protein_list = pd.read_csv(os.path.join(script_dir, '../data/preprocess/entry_class_nn.csv'))
|
58 |
dataframe = pd.read_csv(representation_path)
|
59 |
+
vecsize = dataframe.shape[1] - 1
|
60 |
+
|
|
|
61 |
x = np.empty([0, vecsize])
|
62 |
xemp = np.zeros((1, vecsize), dtype=float)
|
63 |
y = []
|
|
|
67 |
for index, row in tqdm(protein_list.iterrows(), total=len(protein_list)):
|
68 |
pdrow = dataframe.loc[dataframe['Entry'] == row['Entry']]
|
69 |
if len(pdrow) != 0:
|
70 |
+
a = pdrow.loc[:, pdrow.columns != 'Entry']
|
71 |
a = np.array(a)
|
72 |
+
a.shape = (1, vecsize)
|
73 |
x = np.append(x, a, axis=0)
|
74 |
y.append(row['Class'])
|
75 |
else:
|
76 |
ne.append(index)
|
77 |
+
x = np.append(x, xemp, axis=0)
|
78 |
y.append(0.0)
|
|
|
79 |
|
80 |
x = x.astype(np.float64)
|
81 |
y = np.array(y)
|
82 |
y = y.astype(np.float64)
|
83 |
+
|
|
|
84 |
target_names = ['Enzyme', 'Membrane receptor', 'Transcription factor', 'Ion channel', 'Other']
|
85 |
labels = [1.0, 11.0, 12.0, 1005.0, 2000.0]
|
86 |
+
|
87 |
f1 = []
|
88 |
accuracy = []
|
89 |
mcc = []
|
|
|
|
|
|
|
|
|
90 |
report_list = []
|
91 |
+
|
92 |
+
train_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/' + dataset + '_trainindex.csv'))
|
93 |
test_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/testindex_family.csv'))
|
94 |
+
train_index = train_index.dropna(axis=1)
|
95 |
test_index = test_index.dropna(axis=1)
|
|
|
|
|
|
|
96 |
|
97 |
+
conf_matrices = []
|
98 |
|
99 |
print('Producing protein family predictions...\n')
|
100 |
+
for i in tqdm(range(10)):
|
101 |
+
clf = linear_model.SGDClassifier(class_weight="balanced", loss="log", penalty="elasticnet", max_iter=1000, tol=1e-3, random_state=i, n_jobs=-1)
|
102 |
+
clf2 = OneVsRestClassifier(clf, n_jobs=-1)
|
103 |
+
|
104 |
train_indexx = train_index.iloc[i].astype(int)
|
105 |
test_indexx = test_index.iloc[i].astype(int)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
for index in ne:
|
108 |
+
train_indexx = train_indexx[train_indexx != index]
|
109 |
+
test_indexx = test_indexx[test_indexx != index]
|
110 |
|
111 |
train_X, test_X = x[train_indexx], x[test_indexx]
|
112 |
train_y, test_y = y[train_indexx], y[test_indexx]
|
113 |
|
114 |
+
clf2.fit(train_X, train_y)
|
|
|
|
|
115 |
y_pred = clf2.predict(test_X)
|
116 |
+
|
|
|
|
|
117 |
f1_ = f1_score(test_y, y_pred, average='weighted')
|
118 |
f1.append(f1_)
|
119 |
+
|
120 |
ac = accuracy_score(test_y, y_pred)
|
121 |
accuracy.append(ac)
|
122 |
+
|
123 |
c_report = classification_report(test_y, y_pred, target_names=target_names, output_dict=True)
|
124 |
c_matrix = confusion_matrix(test_y, y_pred, labels=labels)
|
125 |
+
conf_matrices.append(c_matrix)
|
126 |
|
127 |
+
class_report = class_based_scores(c_report, c_matrix)
|
128 |
+
mcc_score = matthews_corrcoef(test_y, y_pred)
|
129 |
+
mcc.append(mcc_score)
|
|
|
|
|
|
|
130 |
|
|
|
|
|
|
|
|
|
131 |
report_list.append(class_report)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
f1_perclass = pd.concat([r['f1-score'] for r in report_list], axis=1)
|
134 |
+
ac_perclass = pd.concat([r['accuracy'] for r in report_list], axis=1)
|
135 |
+
mcc_perclass = pd.concat([r['mcc'] for r in report_list], axis=1)
|
136 |
+
|
137 |
+
results = {
|
138 |
+
"f1": f1,
|
139 |
+
"accuracy": accuracy,
|
140 |
+
"mcc": mcc,
|
141 |
+
"confusion_matrices": conf_matrices,
|
142 |
+
"class_reports": report_list,
|
143 |
+
"f1_per_class": f1_perclass,
|
144 |
+
"accuracy_per_class": ac_perclass,
|
145 |
+
"mcc_per_class": mcc_perclass
|
146 |
+
}
|
147 |
+
|
148 |
+
return results
|