Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,13 +14,31 @@ from src.bin.PROBE import run_probe
|
|
14 |
|
15 |
global data_component, filter_component
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def get_baseline_df(selected_methods, selected_metrics):
|
18 |
df = pd.read_csv(CSV_RESULT_PATH)
|
19 |
present_columns = ["method_name"] + selected_metrics
|
20 |
df = df[df['method_name'].isin(selected_methods)][present_columns]
|
21 |
return df
|
22 |
|
23 |
-
def
|
24 |
df = pd.read_csv(CSV_RESULT_PATH)
|
25 |
filtered_df = df[df['method_name'].isin(methods_selected)]
|
26 |
|
@@ -73,7 +91,7 @@ with block:
|
|
73 |
|
74 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
75 |
# table jmmmu bench
|
76 |
-
with gr.TabItem("🏅 PROBE
|
77 |
|
78 |
method_names = pd.read_csv(CSV_RESULT_PATH)['method_name'].unique().tolist()
|
79 |
metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist()
|
@@ -116,23 +134,45 @@ with block:
|
|
116 |
outputs=data_component
|
117 |
)
|
118 |
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
plot_button.click(create_plot, inputs=[method_selector, x_metric_selector, y_metric_selector], outputs=output_plot)
|
134 |
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
|
137 |
with gr.Row():
|
138 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
14 |
|
15 |
global data_component, filter_component
|
16 |
|
17 |
+
|
18 |
+
|
19 |
+
def benchmark_plot(benchmark_type, methods_selected, x_metric, y_metric):
|
20 |
+
if benchmark_type == 'Flexible':
|
21 |
+
# Use general visualizer logic
|
22 |
+
return general_visualizer_plot(methods_selected, x_metric=x_metric, y_metric=y_metric)
|
23 |
+
elif benchmark_type == 'Benchmark 1':
|
24 |
+
return benchmark_1_plot(x_metric, y_metric)
|
25 |
+
elif benchmark_type == 'Benchmark 2':
|
26 |
+
return benchmark_2_plot(x_metric, y_metric)
|
27 |
+
elif benchmark_type == 'Benchmark 3':
|
28 |
+
return benchmark_3_plot(x_metric, y_metric)
|
29 |
+
elif benchmark_type == 'Benchmark 4':
|
30 |
+
return benchmark_4_plot(x_metric, y_metric)
|
31 |
+
else:
|
32 |
+
return "Invalid benchmark type selected."
|
33 |
+
|
34 |
+
|
35 |
def get_baseline_df(selected_methods, selected_metrics):
|
36 |
df = pd.read_csv(CSV_RESULT_PATH)
|
37 |
present_columns = ["method_name"] + selected_metrics
|
38 |
df = df[df['method_name'].isin(selected_methods)][present_columns]
|
39 |
return df
|
40 |
|
41 |
+
def general_visualizer(methods_selected, x_metric, y_metric):
|
42 |
df = pd.read_csv(CSV_RESULT_PATH)
|
43 |
filtered_df = df[df['method_name'].isin(methods_selected)]
|
44 |
|
|
|
91 |
|
92 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
93 |
# table jmmmu bench
|
94 |
+
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
|
95 |
|
96 |
method_names = pd.read_csv(CSV_RESULT_PATH)['method_name'].unique().tolist()
|
97 |
metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist()
|
|
|
134 |
outputs=data_component
|
135 |
)
|
136 |
|
137 |
+
with gr.TabItem("Visualizer"):
|
138 |
+
|
139 |
+
# Dropdown for benchmark type
|
140 |
+
benchmark_types = TASK_INFO + ['flexible']
|
141 |
+
benchmark_type_selector = gr.Dropdown(choices=benchmark_types, label="Select Benchmark Type for Visualization", value="flexible")
|
142 |
+
|
143 |
+
# Dynamic metric selectors (will be updated based on benchmark type)
|
144 |
+
x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric")
|
145 |
+
y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric")
|
146 |
+
method_selector = gr.CheckboxGroup(choices=method_names, label="Select methods to visualize", interactive=True, value=method_names)
|
147 |
+
|
148 |
+
# Button to draw the plot for the selected benchmark
|
149 |
+
plot_button = gr.Button("Plot Visualization")
|
150 |
+
plot_output = gr.Image(label="Plot")
|
151 |
|
152 |
+
# Update metric selectors when benchmark type is chosen
|
153 |
+
def update_metric_choices(benchmark_type):
|
154 |
+
if benchmark_type == 'flexible':
|
155 |
+
# Show all metrics for the flexible visualizer
|
156 |
+
metric_names = df.columns.tolist()
|
157 |
+
return gr.update(choices=metric_names, value=metric_names[0]), gr.update(choices=metric_names, value=metric_names[1])
|
158 |
+
elif benchmark_type in benchmark_specific_metrics:
|
159 |
+
metrics = benchmark_specific_metrics[benchmark_type]
|
160 |
+
return gr.update(choices=metrics, value=metrics[0]), gr.update(choices=metrics[1])
|
161 |
+
return gr.update(choices=[]), gr.update(choices=[])
|
|
|
|
|
162 |
|
163 |
+
benchmark_type_selector.change(
|
164 |
+
update_metric_choices,
|
165 |
+
inputs=[benchmark_type_selector],
|
166 |
+
outputs=[x_metric_selector, y_metric_selector]
|
167 |
+
)
|
168 |
+
|
169 |
+
# Generate the plot based on user input
|
170 |
+
plot_button.click(
|
171 |
+
benchmark_plot,
|
172 |
+
inputs=[benchmark_type_selector, method_selector, x_metric_selector, y_metric_selector],
|
173 |
+
outputs=plot_output
|
174 |
+
)
|
175 |
+
|
176 |
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
|
177 |
with gr.Row():
|
178 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|