Spaces:
Sleeping
Sleeping
Update src/bin/PROBE.py
Browse files- src/bin/PROBE.py +10 -5
src/bin/PROBE.py
CHANGED
@@ -29,9 +29,8 @@ def run_probe(benchmarks, representation_name, representation_file_human, repres
|
|
29 |
ssi.protein_names = ssi.representation_dataframe['Entry'].tolist()
|
30 |
ssi.similarity_tasks = similarity_tasks
|
31 |
ssi.detailed_output = detailed_output
|
32 |
-
print("IN SIMILARITY CALC")
|
33 |
similarity_result = ssi.calculate_all_correlations()
|
34 |
-
print("
|
35 |
print(similarity_result)
|
36 |
|
37 |
|
@@ -42,7 +41,9 @@ def run_probe(benchmarks, representation_name, representation_file_human, repres
|
|
42 |
fp.representation_dataframe = human_representation_dataframe
|
43 |
fp.representation_name = representation_name
|
44 |
fp.detailed_output = detailed_output
|
45 |
-
fp.pred_output()
|
|
|
|
|
46 |
|
47 |
if "family" in benchmarks:
|
48 |
print("\n\nDrug target protein family classification benchmark is running...\n")
|
@@ -50,13 +51,17 @@ def run_probe(benchmarks, representation_name, representation_file_human, repres
|
|
50 |
tfc.representation_name = representation_name
|
51 |
tfc.detailed_output = detailed_output
|
52 |
for dataset in family_prediction_dataset:
|
53 |
-
tfc.score_protein_rep(dataset)
|
|
|
|
|
54 |
|
55 |
if "affinity" in benchmarks:
|
56 |
print("\n\nProtein-protein binding affinity estimation benchmark is running...\n")
|
57 |
bae.skempi_vectors_path = representation_file_affinity
|
58 |
bae.representation_name = representation_name
|
59 |
-
bae.predict_affinities_and_report_results()
|
|
|
|
|
60 |
|
61 |
print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is finished...\n")
|
62 |
return 0
|
|
|
29 |
ssi.protein_names = ssi.representation_dataframe['Entry'].tolist()
|
30 |
ssi.similarity_tasks = similarity_tasks
|
31 |
ssi.detailed_output = detailed_output
|
|
|
32 |
similarity_result = ssi.calculate_all_correlations()
|
33 |
+
print("Similarity Result:")
|
34 |
print(similarity_result)
|
35 |
|
36 |
|
|
|
41 |
fp.representation_dataframe = human_representation_dataframe
|
42 |
fp.representation_name = representation_name
|
43 |
fp.detailed_output = detailed_output
|
44 |
+
function_results = fp.pred_output()
|
45 |
+
print("Function results:")
|
46 |
+
print(function_results)
|
47 |
|
48 |
if "family" in benchmarks:
|
49 |
print("\n\nDrug target protein family classification benchmark is running...\n")
|
|
|
51 |
tfc.representation_name = representation_name
|
52 |
tfc.detailed_output = detailed_output
|
53 |
for dataset in family_prediction_dataset:
|
54 |
+
family_result = tfc.score_protein_rep(dataset)
|
55 |
+
print(f"Family results for {dataset}:")
|
56 |
+
print(family_result)
|
57 |
|
58 |
if "affinity" in benchmarks:
|
59 |
print("\n\nProtein-protein binding affinity estimation benchmark is running...\n")
|
60 |
bae.skempi_vectors_path = representation_file_affinity
|
61 |
bae.representation_name = representation_name
|
62 |
+
affinity result = bae.predict_affinities_and_report_results()
|
63 |
+
print("Affinity Results:")
|
64 |
+
print(affinity_result)
|
65 |
|
66 |
print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is finished...\n")
|
67 |
return 0
|