Spaces:
Sleeping
Sleeping
up
Browse files- src/data/function_results.csv +2 -2
- src/utils.py +213 -0
src/data/function_results.csv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bb6e504784eeae2a09313539759a7bf02757c08fcc7d1dabf5ba4efeab3eb6a
|
3 |
+
size 3475
|
src/utils.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import os
|
3 |
+
|
4 |
+
import sys
|
5 |
+
|
6 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
7 |
+
sys.path.append('..')
|
8 |
+
sys.path.append('.')
|
9 |
+
|
10 |
+
def save_similarity_output(output_dict, method_name, leaderboard_path="./data/leaderboard_results.csv", similarity_path="./data/similarity_results.csv"):
|
11 |
+
# Load or initialize the DataFrames
|
12 |
+
if os.path.exists(leaderboard_path):
|
13 |
+
leaderboard_df = pd.read_csv(leaderboard_path)
|
14 |
+
else:
|
15 |
+
leaderboard_df = pd.DataFrame()
|
16 |
+
|
17 |
+
if os.path.exists(similarity_path):
|
18 |
+
similarity_df = pd.read_csv(similarity_path)
|
19 |
+
else:
|
20 |
+
similarity_df = pd.DataFrame(columns=['Method'])
|
21 |
+
|
22 |
+
# Check if method exists in similarity results
|
23 |
+
if method_name not in similarity_df['Method'].values:
|
24 |
+
similarity_df = pd.concat([similarity_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
25 |
+
|
26 |
+
# Initialize storage for averages
|
27 |
+
averages = {}
|
28 |
+
|
29 |
+
# Iterate through the output_dict and calculate averages if all aspects (MF, CC, BP) are present
|
30 |
+
for dataset in ['sparse', '200', '500']:
|
31 |
+
correlation_values = []
|
32 |
+
pvalue_values = []
|
33 |
+
|
34 |
+
# Check each aspect within the dataset (MF, BP, CC)
|
35 |
+
for aspect in ['MF', 'BP', 'CC']:
|
36 |
+
correlation_key = f"{dataset}_{aspect}_correlation"
|
37 |
+
pvalue_key = f"{dataset}_{aspect}_pvalue"
|
38 |
+
|
39 |
+
# Process correlation if present
|
40 |
+
if correlation_key in output_dict:
|
41 |
+
correlation_values.append(output_dict[correlation_key])
|
42 |
+
similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_{aspect}_correlation"] = output_dict[correlation_key]
|
43 |
+
leaderboard_df.at[0, f"sim_{dataset}_{aspect}_correlation"] = output_dict[correlation_key]
|
44 |
+
|
45 |
+
# Process pvalue if present
|
46 |
+
if pvalue_key in output_dict:
|
47 |
+
pvalue_values.append(output_dict[pvalue_key])
|
48 |
+
similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_{aspect}_pvalue"] = output_dict[pvalue_key]
|
49 |
+
leaderboard_df.at[0, f"sim_{dataset}_{aspect}_pvalue"] = output_dict[pvalue_key]
|
50 |
+
|
51 |
+
# Calculate averages if all three aspects (MF, BP, CC) are present
|
52 |
+
if len(correlation_values) == 3:
|
53 |
+
averages[f"{dataset}_Ave_correlation"] = sum(correlation_values) / 3
|
54 |
+
similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
|
55 |
+
leaderboard_df.at[0, f"sim_{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
|
56 |
+
|
57 |
+
if len(pvalue_values) == 3:
|
58 |
+
averages[f"{dataset}_Ave_pvalue"] = sum(pvalue_values) / 3
|
59 |
+
similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
60 |
+
leaderboard_df.at[0, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
61 |
+
|
62 |
+
# Save the updated DataFrames back to CSV
|
63 |
+
leaderboard_df.to_csv(leaderboard_path, index=False)
|
64 |
+
similarity_df.to_csv(similarity_path, index=False)
|
65 |
+
|
66 |
+
return 0
|
67 |
+
|
68 |
+
def save_function_output(model_output, method_name, func_results_path="./data/function_results.csv", leaderboard_path="./data/leaderboard_results.csv"):
|
69 |
+
# Load or initialize the DataFrames
|
70 |
+
if os.path.exists(func_results_path):
|
71 |
+
func_results_df = pd.read_csv(func_results_path)
|
72 |
+
else:
|
73 |
+
func_results_df = pd.DataFrame(columns=['Method'])
|
74 |
+
|
75 |
+
if os.path.exists(leaderboard_path):
|
76 |
+
leaderboard_df = pd.read_csv(leaderboard_path)
|
77 |
+
else:
|
78 |
+
leaderboard_df = pd.DataFrame()
|
79 |
+
|
80 |
+
# Ensure the method_name row exists in function results
|
81 |
+
if method_name not in func_results_df['Method'].values:
|
82 |
+
func_results_df = pd.concat([func_results_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
83 |
+
|
84 |
+
# Storage for averaging in leaderboard results
|
85 |
+
metrics_sum = {
|
86 |
+
'accuracy': {'BP': [], 'CC': [], 'MF': []},
|
87 |
+
'F1': {'BP': [], 'CC': [], 'MF': []},
|
88 |
+
'precision': {'BP': [], 'CC': [], 'MF': []},
|
89 |
+
'recall': {'BP': [], 'CC': [], 'MF': []}
|
90 |
+
}
|
91 |
+
|
92 |
+
# Iterate over each entry in model_output
|
93 |
+
for entry in model_output:
|
94 |
+
key = entry[0]
|
95 |
+
accuracy, f1, precision, recall = entry[1], entry[4], entry[7], entry[10]
|
96 |
+
|
97 |
+
# Parse the key to extract the aspect and datasets
|
98 |
+
aspect, dataset1, dataset2 = key.split('_')
|
99 |
+
|
100 |
+
# Save each metric to function_results under its respective column
|
101 |
+
func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_accuracy"] = accuracy
|
102 |
+
func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_F1"] = f1
|
103 |
+
func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_precision"] = precision
|
104 |
+
func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_recall"] = recall
|
105 |
+
|
106 |
+
# Add values for leaderboard averaging
|
107 |
+
metrics_sum['accuracy'][aspect].append(accuracy)
|
108 |
+
metrics_sum['F1'][aspect].append(f1)
|
109 |
+
metrics_sum['precision'][aspect].append(precision)
|
110 |
+
metrics_sum['recall'][aspect].append(recall)
|
111 |
+
|
112 |
+
# Calculate averages for each aspect and overall (if all aspects have entries)
|
113 |
+
for metric in ['accuracy', 'F1', 'precision', 'recall']:
|
114 |
+
for aspect in ['BP', 'CC', 'MF']:
|
115 |
+
if metrics_sum[metric][aspect]:
|
116 |
+
aspect_average = sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
|
117 |
+
leaderboard_df.at[0, f"func_{aspect}_{metric}"] = aspect_average
|
118 |
+
|
119 |
+
# Calculate overall average if each aspect has entries
|
120 |
+
if all(metrics_sum[metric][aspect] for aspect in ['BP', 'CC', 'MF']):
|
121 |
+
overall_average = sum(
|
122 |
+
sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
|
123 |
+
for aspect in ['BP', 'CC', 'MF']
|
124 |
+
) / 3
|
125 |
+
leaderboard_df.at[0, f"func_Ave_{metric}"] = overall_average
|
126 |
+
|
127 |
+
# Save updated DataFrames to CSV
|
128 |
+
func_results_df.to_csv(func_results_path, index=False)
|
129 |
+
leaderboard_df.to_csv(leaderboard_path, index=False)
|
130 |
+
|
131 |
+
return 0
|
132 |
+
|
133 |
+
def save_family_output(model_output, method_name, leaderboard_path="./data/leaderboard_results.csv", family_results_path="./data/family_results.csv"):
|
134 |
+
# Load or initialize the DataFrames
|
135 |
+
if os.path.exists(leaderboard_path):
|
136 |
+
leaderboard_df = pd.read_csv(leaderboard_path)
|
137 |
+
else:
|
138 |
+
leaderboard_df = pd.DataFrame(columns=['Method'])
|
139 |
+
|
140 |
+
if os.path.exists(family_results_path):
|
141 |
+
family_results_df = pd.read_csv(family_results_path)
|
142 |
+
else:
|
143 |
+
family_results_df = pd.DataFrame(columns=['Method'])
|
144 |
+
|
145 |
+
# Ensure the method_name row exists in the leaderboard results
|
146 |
+
if method_name not in leaderboard_df['Method'].values:
|
147 |
+
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
148 |
+
|
149 |
+
# Ensure the method_name row exists in family results
|
150 |
+
if method_name not in family_results_df['Method'].values:
|
151 |
+
family_results_df = pd.concat([family_results_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
152 |
+
|
153 |
+
# Iterate through the datasets and metrics
|
154 |
+
for dataset, metrics in model_output.items():
|
155 |
+
for metric, values in metrics.items():
|
156 |
+
# Calculate the average for each metric in leaderboard results
|
157 |
+
avg_value = sum(values) / len(values) if values else None
|
158 |
+
leaderboard_df.at[leaderboard_df['Method'] == method_name, f"fam_{dataset}_{metric}_ave"] = avg_value
|
159 |
+
|
160 |
+
# Save each fold result for family results
|
161 |
+
for i, value in enumerate(values):
|
162 |
+
family_results_df.at[family_results_df['Method'] == method_name, f"{dataset}_{metric}_{i}"] = value
|
163 |
+
|
164 |
+
# Save updated DataFrames to CSV
|
165 |
+
leaderboard_df.to_csv(leaderboard_path, index=False)
|
166 |
+
family_results_df.to_csv(family_results_path, index=False)
|
167 |
+
|
168 |
+
return leaderboard_df, family_results_df
|
169 |
+
|
170 |
+
def save_affinity_output(model_output, method_name, leaderboard_path="./data/leaderboard_results.csv", affinity_results_path="./data/affinity_results.csv"):
|
171 |
+
# Load or initialize DataFrames
|
172 |
+
if os.path.exists(leaderboard_path):
|
173 |
+
leaderboard_df = pd.read_csv(leaderboard_path)
|
174 |
+
else:
|
175 |
+
leaderboard_df = pd.DataFrame(columns=['Method'])
|
176 |
+
|
177 |
+
if os.path.exists(affinity_results_path):
|
178 |
+
affinity_results_df = pd.read_csv(affinity_results_path)
|
179 |
+
else:
|
180 |
+
affinity_results_df = pd.DataFrame(columns=['Method'])
|
181 |
+
|
182 |
+
# Ensure the method_name row exists in the leaderboard results
|
183 |
+
if method_name not in leaderboard_df['Method'].values:
|
184 |
+
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
185 |
+
|
186 |
+
# Ensure the method_name row exists in affinity results
|
187 |
+
if method_name not in affinity_results_df['Method'].values:
|
188 |
+
affinity_results_df = pd.concat([affinity_results_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
189 |
+
|
190 |
+
# Process 'summary' section for leaderboard results
|
191 |
+
summary = model_output.get('summary', {})
|
192 |
+
if summary:
|
193 |
+
leaderboard_df.at[leaderboard_df['Method'] == method_name, 'aff_mse_ave'] = summary.get('val_mse_error')
|
194 |
+
leaderboard_df.at[leaderboard_df['Method'] == method_name, 'aff_mae_ave'] = summary.get('val_mae_error')
|
195 |
+
leaderboard_df.at[leaderboard_df['Method'] == method_name, 'aff_corr_ave'] = summary.get('validation_corr')
|
196 |
+
|
197 |
+
# Process 'detail' section for affinity results
|
198 |
+
detail = model_output.get('detail', {})
|
199 |
+
if detail:
|
200 |
+
# Save each 10-fold cross-validation result for mse, mae, and corr
|
201 |
+
for i in range(10):
|
202 |
+
if 'val_mse_errors' in detail:
|
203 |
+
affinity_results_df.at[affinity_results_df['Method'] == method_name, f"mse_{i}"] = detail['val_mse_errors'][i]
|
204 |
+
if 'val_mae_errors' in detail:
|
205 |
+
affinity_results_df.at[affinity_results_df['Method'] == method_name, f"mae_{i}"] = detail['val_mae_errors'][i]
|
206 |
+
if 'validation_corrs' in detail:
|
207 |
+
affinity_results_df.at[affinity_results_df['Method'] == method_name, f"corr_{i}"] = detail['validation_corrs'][i]
|
208 |
+
|
209 |
+
# Save updated DataFrames to CSV
|
210 |
+
leaderboard_df.to_csv(leaderboard_path, index=False)
|
211 |
+
affinity_results_df.to_csv(affinity_results_path, index=False)
|
212 |
+
|
213 |
+
return 0
|