Spaces:
Sleeping
Sleeping
Update src/vis_utils.py
Browse files- src/vis_utils.py +17 -1
src/vis_utils.py
CHANGED
@@ -152,8 +152,17 @@ def plot_function_results(method_names, aspect, metric, function_path="/tmp/func
|
|
152 |
}
|
153 |
|
154 |
# Create clustermap
|
155 |
-
g = sns.clustermap(df, annot=True, cmap="YlGnBu", row_cluster=
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
title = f"{long_form_mapping[aspect.upper()]} Results for {metric.capitalize()}"
|
158 |
g.fig.suptitle(title, x=0.5, y=1.02, fontsize=16, ha='center') # Center the title above the plot
|
159 |
|
@@ -180,6 +189,12 @@ def plot_family_results(method_names, dataset, family_path="/tmp/family_results.
|
|
180 |
# Filter by method names and selected dataset columns
|
181 |
df = df[df['Method'].isin(method_names)]
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
# Filter columns based on the dataset and metrics
|
184 |
value_vars = [col for col in df.columns if col.startswith(f"{dataset}_") and "_" in col]
|
185 |
|
@@ -244,6 +259,7 @@ def plot_affinity_results(method_names, metric, affinity_path="/tmp/affinity_res
|
|
244 |
|
245 |
# Gather columns related to the specified metric and validate
|
246 |
metric_columns = [col for col in df.columns if col.startswith(f"{metric}_")]
|
|
|
247 |
df = df[['Method'] + metric_columns].set_index('Method')
|
248 |
|
249 |
df = df.fillna(0)
|
|
|
152 |
}
|
153 |
|
154 |
# Create clustermap
|
155 |
+
g = sns.clustermap(df, annot=True, cmap="YlGnBu", row_cluster=True, col_cluster=True, figsize=(15, 15))
|
156 |
|
157 |
+
for label in g.ax_heatmap.get_yticklabels():
|
158 |
+
method = label.get_text()
|
159 |
+
label.set_color(get_method_color(method))
|
160 |
+
|
161 |
+
# Apply color to column labels
|
162 |
+
for label in g.ax_heatmap.get_xticklabels():
|
163 |
+
method = label.get_text()
|
164 |
+
label.set_color(get_method_color(method))
|
165 |
+
|
166 |
title = f"{long_form_mapping[aspect.upper()]} Results for {metric.capitalize()}"
|
167 |
g.fig.suptitle(title, x=0.5, y=1.02, fontsize=16, ha='center') # Center the title above the plot
|
168 |
|
|
|
189 |
# Filter by method names and selected dataset columns
|
190 |
df = df[df['Method'].isin(method_names)]
|
191 |
|
192 |
+
mcc_columns = [col for col in df.columns if col.startswith(f"{dataset}_mcc_")]
|
193 |
+
df['Mean_MCC'] = df[mcc_columns].mean(axis=1)
|
194 |
+
|
195 |
+
# Sort the DataFrame by the mean MCC
|
196 |
+
df = df.sort_values(by='Mean_MCC', ascending=False)
|
197 |
+
|
198 |
# Filter columns based on the dataset and metrics
|
199 |
value_vars = [col for col in df.columns if col.startswith(f"{dataset}_") and "_" in col]
|
200 |
|
|
|
259 |
|
260 |
# Gather columns related to the specified metric and validate
|
261 |
metric_columns = [col for col in df.columns if col.startswith(f"{metric}_")]
|
262 |
+
df = df.sort_values(by=metric_columns, ascending=False)
|
263 |
df = df[['Method'] + metric_columns].set_index('Method')
|
264 |
|
265 |
df = df.fillna(0)
|